Numerical Approximation of Port-Hamiltonian Systems for Hyperbolic or Parabolic PDEs with Boundary Control
Authors
Andrea Brugnoli, Ghislain Haine, Anass Serhani, Xavier Vasseur
Abstract
The present manuscript concerns the design of structure-preserving discretization methods for the solution of systems of boundary controlled Partial Differential Equations (PDEs) thanks to the port- Hamiltonian formalism. We first provide a general structure of infinite-dimensional port-Hamiltonian systems (pHs) for which the Partitioned Finite Element Method (PFEM) straightforwardly applies. The proposed strategy is particularised to abstract multidimensional linear hyperbolic and parabolic systems of PDEs. Then we show that instructional model problems based on the wave equation, Mindlin equation and heat equation fit within this unified framework. Secondly we introduce the ongoing project SCRIMP (Simulation and ContRol of Interactions in Multi-Physics) developed for the numerical simulation of infinite-dimensional pHs. SCRIMP notably relies on the FEniCS open-source computing platform for the finite element spatial discretization. Finally, we illustrate how to solve the considered model problems within this framework by carefully explaining the methodology. As additional support, companion interactive Jupyter notebooks are provided.
Citation
- Journal: Journal of Applied Mathematics and Physics
- Year: 2021
- Volume: 09
- Issue: 06
- Pages: 1278–1321
- Publisher: Scientific Research Publishing, Inc.
- DOI: 10.4236/jamp.2021.96088
BibTeX
@article{Brugnoli_2021,
title={{Numerical Approximation of Port-Hamiltonian Systems for Hyperbolic or Parabolic PDEs with Boundary Control}},
volume={09},
ISSN={2327-4379},
DOI={10.4236/jamp.2021.96088},
number={06},
journal={Journal of Applied Mathematics and Physics},
publisher={Scientific Research Publishing, Inc.},
author={Brugnoli, Andrea and Haine, Ghislain and Serhani, Anass and Vasseur, Xavier},
year={2021},
pages={1278--1321}
}
References
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Le Gorrec, Y. & Matignon, D. Coupling between hyperbolic and diffusive systems: A port-Hamiltonian formulation. European Journal of Control vol. 19 505–512 (2013) – 10.1016/j.ejcon.2013.09.003
- Van der Schaft, A. & Maschke, B. Geometry of Thermodynamic Processes. Entropy vol. 20 925 (2018) – 10.3390/e20120925
- Vu, N. M. T., Lefèvre, L. & Maschke, B. A structured control model for the thermo-magneto-hydrodynamics of plasmas in tokamaks. Mathematical and Computer Modelling of Dynamical Systems vol. 22 181–206 (2016) – 10.1080/13873954.2016.1154874
- Rashad, R., Califano, F., van der Schaft, A. J. & Stramigioli, S. Twenty years of distributed port-Hamiltonian systems: a literature review. IMA Journal of Mathematical Control and Information vol. 37 1400–1422 (2020) – 10.1093/imamci/dnaa018
- Brugnoli, A., Haine, G., Serhani, A. & Vasseur, X. Numerical Approximation of Port-Hamiltonian Systems for Hyperbolic or Parabolic PDEs with Boundary Control. Journal of Applied Mathematics and Physics vol. 09 1278–1321 (2021) – 10.4236/jamp.2021.96088
- Brugnoli, A., Alazard, D., Pommier-Budinger, V. & Matignon, D. Port-Hamiltonian formulation and symplectic discretization of plate models Part I: Mindlin model for thick plates. Applied Mathematical Modelling vol. 75 940–960 (2019) – 10.1016/j.apm.2019.04.035
- Cardoso-Ribeiro, F. L., Matignon, D. & Lefèvre, L. A structure-preserving Partitioned Finite Element Method for the 2D wave equation. IFAC-PapersOnLine vol. 51 119–124 (2018) – 10.1016/j.ifacol.2018.06.033
- Serhani, A., Haine, G. & Matignon, D. Anisotropic heterogeneous n-D heat equation with boundary control and observation: I. Modeling as port-Hamiltonian system. IFAC-PapersOnLine vol. 52 51–56 (2019) – 10.1016/j.ifacol.2019.07.009
- Serhani, A., Haine, G. & Matignon, D. Anisotropic heterogeneous n-D heat equation with boundary control and observation: II. Structure-preserving discretization. IFAC-PapersOnLine vol. 52 57–62 (2019) – 10.1016/j.ifacol.2019.07.010
- Toledo, J., Wu, Y., Ramírez, H. & Le Gorrec, Y. Observer-based boundary control of distributed port-Hamiltonian systems. Automatica vol. 120 109130 (2020) – 10.1016/j.automatica.2020.109130
- Krug, R., Mehrmann, V. & Schmidt, M. Nonlinear optimization of district heating networks. Optimization and Engineering vol. 22 783–819 (2020) – 10.1007/s11081-020-09549-0
- Golo, G., Talasila, V., van der Schaft, A. & Maschke, B. Hamiltonian discretization of boundary control systems. Automatica vol. 40 757–771 (2004) – 10.1016/j.automatica.2003.12.017
- Moulla, R., Lefévre, L. & Maschke, B. Pseudo-spectral methods for the spatial symplectic reduction of open systems of conservation laws. Journal of Computational Physics vol. 231 1272–1292 (2012) – 10.1016/j.jcp.2011.10.008
- Trenchant, V., Ramirez, H., Le Gorrec, Y. & Kotyczka, P. Finite differences on staggered grids preserving the port-Hamiltonian structure with application to an acoustic duct. Journal of Computational Physics vol. 373 673–697 (2018) – 10.1016/j.jcp.2018.06.051
- Kotyczka, P., Maschke, B. & Lefèvre, L. Weak form of Stokes–Dirac structures and geometric discretization of port-Hamiltonian systems. Journal of Computational Physics vol. 361 442–476 (2018) – 10.1016/j.jcp.2018.02.006
- Kirby, R. C. & Kieu, T. T. Symplectic-mixed finite element approximation of linear acoustic wave equations. Numerische Mathematik vol. 130 257–291 (2014) – 10.1007/s00211-014-0667-4
- Altmann, R. & Schulze, P. A port-Hamiltonian formulation of the Navier–Stokes equations for reactive flows. Systems & Control Letters vol. 100 51–55 (2017) – 10.1016/j.sysconle.2016.12.005
- Joly, P. Variational Methods for Time-Dependent Wave Propagation Problems. Lecture Notes in Computational Science and Engineering 201–264 (2003) doi:10.1007/978-3-642-55483-4_6 – 10.1007/978-3-642-55483-4_6
- Boffi, D., Brezzi, F. & Fortin, M. Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics (Springer Berlin Heidelberg, 2013). doi:10.1007/978-3-642-36519-5 – 10.1007/978-3-642-36519-5
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Courant, T. J. Dirac manifolds. Transactions of the American Mathematical Society vol. 319 631–661 (1990) – 10.1090/s0002-9947-1990-0998124-1
- Beattie, C., Mehrmann, V., Xu, H. & Zwart, H. Linear port-Hamiltonian descriptor systems. Mathematics of Control, Signals, and Systems vol. 30 (2018) – 10.1007/s00498-018-0223-3
- Mehrmann, V. & Morandin, R. Structure-preserving discretization for port-Hamiltonian descriptor systems. 2019 IEEE 58th Conference on Decision and Control (CDC) 6863–6868 (2019) doi:10.1109/cdc40024.2019.9030180 – 10.1109/cdc40024.2019.9030180
- Serhani, A., Matignon, D. & Haine, G. A Partitioned Finite Element Method for the Structure-Preserving Discretization of Damped Infinite-Dimensional Port-Hamiltonian Systems with Boundary Control. Lecture Notes in Computer Science 549–558 (2019) doi:10.1007/978-3-030-26980-7_57 – 10.1007/978-3-030-26980-7_57
- Serhani, A., Matignon, D. & Haine, G. Partitioned Finite Element Method for port-Hamiltonian systems with Boundary Damping: Anisotropic Heterogeneous 2D wave equations. IFAC-PapersOnLine vol. 52 96–101 (2019) – 10.1016/j.ifacol.2019.08.017
- Payen, G., Matignon, D. & Haine, G. Modelling and structure-preserving discretization of Maxwell’s equations as port-Hamiltonian system. IFAC-PapersOnLine vol. 53 7581–7586 (2020) – 10.1016/j.ifacol.2020.12.1355
- Arnold, D. N. & Lee, J. J. Mixed Methods for Elastodynamics with Weak Symmetry. SIAM Journal on Numerical Analysis vol. 52 2743–2769 (2014) – 10.1137/13095032x
- Arnold, D. N. & Winther, R. Mixed finite elements for elasticity. Numerische Mathematik vol. 92 401–419 (2002) – 10.1007/s002110100348
- Arnold, D. N., Brezzi, F. & Douglas, J. PEERS: A new mixed finite element for plane elasticity. Japan Journal of Applied Mathematics vol. 1 347–367 (1984) – 10.1007/bf03167064
- da Veiga, L. B., Mora, D. & Rodríguez, R. Numerical analysis of a locking‐free mixed finite element method for a bending moment formulation of Reissner‐Mindlin plate model. Numerical Methods for Partial Differential Equations vol. 29 40–63 (2012) – 10.1002/num.21698
- Brugnoli, A., Alazard, D., Pommier-Budinger, V. & Matignon, D. Port-Hamiltonian formulation and symplectic discretization of plate models Part II: Kirchhoff model for thin plates. Applied Mathematical Modelling vol. 75 961–981 (2019) – 10.1016/j.apm.2019.04.036
- Brugnoli, A., Cardoso-Ribeiro, F. L., Haine, G. & Kotyczka, P. Partitioned finite element method for structured discretization with mixed boundary conditions. IFAC-PapersOnLine vol. 53 7557–7562 (2020) – 10.1016/j.ifacol.2020.12.1351
- Linge, S. & Langtangen, H. P. Programming for Computations - Python. Texts in Computational Science and Engineering (Springer International Publishing, 2020). doi:10.1007/978-3-030-16877-3 – 10.1007/978-3-030-16877-3
- Alnæs, M. S., Logg, A., Ølgaard, K. B., Rognes, M. E. & Wells, G. N. Unified form language. ACM Transactions on Mathematical Software vol. 40 1–37 (2014) – 10.1145/2566630
- Kirby, R. C. & Logg, A. Efficient compilation of a class of variational forms. ACM Transactions on Mathematical Software vol. 33 17 (2007) – 10.1145/1268769.1268771
- Logg, A. & Wells, G. N. DOLFIN. ACM Transactions on Mathematical Software vol. 37 1–28 (2010) – 10.1145/1731022.1731030
- Automated Solution of Differential Equations by the Finite Element Method. Lecture Notes in Computational Science and Engineering (Springer Berlin Heidelberg, 2012). doi:10.1007/978-3-642-23099-8 – 10.1007/978-3-642-23099-8
- Andersson, C., Führer, C. & Åkesson, J. Assimulo: A unified framework for ODE solvers. Mathematics and Computers in Simulation vol. 116 26–43 (2015) – 10.1016/j.matcom.2015.04.007
- Hindmarsh, A. C. et al. SUNDIALS. ACM Transactions on Mathematical Software vol. 31 363–396 (2005) – 10.1145/1089014.1089020
- Chaturantabut, S., Beattie, C. & Gugercin, S. Structure-Preserving Model Reduction for Nonlinear Port-Hamiltonian Systems. SIAM Journal on Scientific Computing vol. 38 B837–B865 (2016) – 10.1137/15m1055085
- Egger, H., Kugler, T., Liljegren-Sailer, B., Marheineke, N. & Mehrmann, V. On Structure-Preserving Model Reduction for Damped Wave Propagation in Transport Networks. SIAM Journal on Scientific Computing vol. 40 A331–A365 (2018) – 10.1137/17m1125303
- Cohen, G. & Grob, P. Mixed Higher Order Spectral Finite Elements for Reissner–Mindlin Equations. SIAM Journal on Scientific Computing vol. 29 986–1005 (2007) – 10.1137/050642332
- Benner, P. & Heiland, J. Time-dependent Dirichlet conditions in finite element discretizations. ScienceOpen Research vol. 0 (2015) – 10.14293/s2199-1006.1.sor-math.av2jw3.v1
- Cardoso-Ribeiro, F. L., Brugnoli, A., Matignon, D. & Lefevre, L. Port-Hamiltonian modeling, discretization and feedback control of a circular water tank. 2019 IEEE 58th Conference on Decision and Control (CDC) 6881–6886 (2019) doi:10.1109/cdc40024.2019.9030007 – 10.1109/cdc40024.2019.9030007
- Kotyczka, P. & Lefèvre, L. Discrete-time port-Hamiltonian systems: A definition based on symplectic integration. Systems & Control Letters vol. 133 104530 (2019) – 10.1016/j.sysconle.2019.104530