Port-Hamiltonian model of two-dimensional shallow water equations in moving containers
Authors
Flávio Luiz Cardoso-Ribeiro, Denis Matignon, Valérie Pommier-Budinger
Abstract
The free surface motion in moving containers is an important physical phenomenon for many engineering applications. One way to model the free surface motion is by employing shallow water equations (SWEs). The port-Hamiltonian systems formulation is a powerful tool that can be used for modeling complex systems in a modular way. In this work, we extend previous work on SWEs using the port-Hamiltonian formulation, by considering the two-dimensional equations under rigid body motions. The resulting equations consist of a mixed-port-Hamiltonian system, with finite and infinite-dimensional energy variables and ports. 2000 Math Subject Classification: 34K30, 35K57, 35Q80, 92D25
Citation
- Journal: IMA Journal of Mathematical Control and Information
- Year: 2020
- Volume: 37
- Issue: 4
- Pages: 1348–1366
- Publisher: Oxford University Press (OUP)
- DOI: 10.1093/imamci/dnaa016
BibTeX
@article{Cardoso_Ribeiro_2020,
title={{Port-Hamiltonian model of two-dimensional shallow water equations in moving containers}},
volume={37},
ISSN={1471-6887},
DOI={10.1093/imamci/dnaa016},
number={4},
journal={IMA Journal of Mathematical Control and Information},
publisher={Oxford University Press (OUP)},
author={Cardoso-Ribeiro, Flávio Luiz and Matignon, Denis and Pommier-Budinger, Valérie},
year={2020},
pages={1348--1366}
}
References
- Alemi Ardakani, H. A symplectic integrator for dynamic coupling between nonlinear vessel motion with variable cross-section and bottom topography and interior shallow-water sloshing. Journal of Fluids and Structures vol. 65 30–43 (2016) – 10.1016/j.jfluidstructs.2016.03.013
- ALEMI ARDAKANI, H. & BRIDGES, T. J. Dynamic coupling between shallow-water sloshing and horizontal vehicle motion. European Journal of Applied Mathematics vol. 21 479–517 (2010) – 10.1017/s0956792510000197
- ARDAKANI, H. A. & BRIDGES, T. J. Shallow-water sloshing in vessels undergoing prescribed rigid-body motion in three dimensions. Journal of Fluid Mechanics vol. 667 474–519 (2011) – 10.1017/s0022112010004477
- Alemi Ardakani, H. & Bridges, T. J. Shallow-water sloshing in vessels undergoing prescribed rigid-body motion in two dimensions. European Journal of Mechanics - B/Fluids vol. 31 30–43 (2012) – 10.1016/j.euromechflu.2011.08.004
- Arakawa, A potential enstrophy and energy conserving scheme for the shallow water equations. Mon. Wea. Rev. (1981)
- Baaiu, A. et al. Port-based modelling of mass transport phenomena. Mathematical and Computer Modelling of Dynamical Systems vol. 15 233–254 (2009) – 10.1080/13873950902808578
- Brugnoli, A., Alazard, D., Pommier-Budinger, V. & Matignon, D. Port-Hamiltonian formulation and symplectic discretization of plate models Part I: Mindlin model for thick plates. Applied Mathematical Modelling vol. 75 940–960 (2019) – 10.1016/j.apm.2019.04.035
- Cardoso-Ribeiro, (2016)
- Cardoso-Ribeiro, A Partitioned Finite Element Method for power-preserving discretization of open systems of conservation laws. (2019)
- Cardoso-Ribeiro, F. L., Matignon, D. & Pommier-Budinger, V. Modeling of a Fluid-structure coupled system using port-Hamiltonian formulation. IFAC-PapersOnLine vol. 48 217–222 (2015) – 10.1016/j.ifacol.2015.10.242
- Cardoso-Ribeiro, F. L., Matignon, D. & Pommier-Budinger, V. A port-Hamiltonian model of liquid sloshing in moving containers and application to a fluid-structure system. Journal of Fluids and Structures vol. 69 402–427 (2017) – 10.1016/j.jfluidstructs.2016.12.007
- Dellar, P. J. & Salmon, R. Shallow water equations with a complete Coriolis force and topography. Physics of Fluids vol. 17 (2005) – 10.1063/1.2116747
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Golo, G., Talasila, V., van der Schaft, A. & Maschke, B. Hamiltonian discretization of boundary control systems. Automatica vol. 40 757–771 (2004) – 10.1016/j.automatica.2003.12.017
- Hamroun, (2009)
- Hamroun, B., Dimofte, A., Lefèvre, L. & Mendes, E. Control by Interconnection and Energy-Shaping Methods of Port Hamiltonian Models. Application to the Shallow Water Equations. European Journal of Control vol. 16 545–563 (2010) – 10.3166/ejc.16.545-563
- Hamroun, Proceedings of the 46th IEEE Conference on Decision and Control (2007)
- Jeltsema, D. & van der Schaft, A. J. Memristive port-Hamiltonian Systems. Mathematical and Computer Modelling of Dynamical Systems vol. 16 75–93 (2010) – 10.1080/13873951003690824
- Kotyczka, IFAC-PapersOnLine (2015)
- Kotyczka, P. & Maschke, B. Discrete port-Hamiltonian formulation and numerical approximation for systems of two conservation laws. at - Automatisierungstechnik vol. 65 308–322 (2017) – 10.1515/auto-2016-0098
- Leimkuhler, B. & Reich, S. Simulating Hamiltonian Dynamics. (2005) doi:10.1017/cbo9780511614118 – 10.1017/cbo9780511614118
- Macchelli, A. & Melchiorri, C. Control by interconnection of mixed port Hamiltonian systems. IEEE Transactions on Automatic Control vol. 50 1839–1844 (2005) – 10.1109/tac.2005.858656
- Maschke, On alternative Poisson brackets for fluid dynamical systems and their extension to Stokes-Dirac structures. IFAC-PapersOnLine (2013)
- Moulla, R., Lefévre, L. & Maschke, B. Pseudo-spectral methods for the spatial symplectic reduction of open systems of conservation laws. Journal of Computational Physics vol. 231 1272–1292 (2012) – 10.1016/j.jcp.2011.10.008
- Olver, P. J. Applications of Lie Groups to Differential Equations. Graduate Texts in Mathematics (Springer New York, 1993). doi:10.1007/978-1-4612-4350-2 – 10.1007/978-1-4612-4350-2
- Pasumarthy, R., Ambati, V. R. & van der Schaft, A. J. Port-Hamiltonian discretization for open channel flows. Systems & Control Letters vol. 61 950–958 (2012) – 10.1016/j.sysconle.2012.05.003
- Pasumarthy, Proceedings of the 16th International Symposium on Mathematical Theory of Networks and Systems (2004)
- Pasumarthy, Proceedings of the 17th International Symposium on Mathematical Theory of Networks and Systems, number 2 (2006)
- Petit, N. & Rouchon, P. Dynamics and solutions to some control problems for water-tank systems. IEEE Transactions on Automatic Control vol. 47 594–609 (2002) – 10.1109/9.995037
- Polner, M. & van der Vegt, J. J. W. A Hamiltonian vorticity–dilatation formulation of the compressible Euler equations. Nonlinear Analysis: Theory, Methods & Applications vol. 109 113–135 (2014) – 10.1016/j.na.2014.07.005
- Trenchant, IFAC-PapersOnLine (2015)
- Trenchant, Proceedings of the 2017 American Control Conference (2017)
- Trivedi, M. V., Banavar, R. N. & Kotyczka, P. Hamiltonian modelling and buckling analysis of a nonlinear flexible beam with actuation at the bottom. Mathematical and Computer Modelling of Dynamical Systems vol. 22 475–492 (2016) – 10.1080/13873954.2016.1201517
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Vu, Distributed and backstepping boundary controls for port-Hamiltonian systems with symmetries. Math. Comput. Model. Dyn. Syst. (2016)
- Vu, A structured control model for the thermo-magneto-hydrodynamics of plasmas in tokamaks. Math. Comput. Model. Dyn. Syst. (2016)
- Wu, IFAC-PapersOnLine (2015)
- Zhou, W., Hamroun, B., Couenne, F. & Le Gorrec, Y. Distributed port-Hamiltonian modelling for irreversible processes. Mathematical and Computer Modelling of Dynamical Systems vol. 23 3–22 (2016) – 10.1080/13873954.2016.1237970
- Zwart, Proceedings of the 21st International Symposium on Mathematical Theory of Networks and Systems (2014)