Differential–algebraic systems with dissipative Hamiltonian structure
Authors
Volker Mehrmann, Arjan van der Schaft
Abstract
Different representations of linear dissipative Hamiltonian and port-Hamiltonian differential–algebraic equations (DAE) systems are presented and compared. Using global geometric and algebraic points of view, translations between different representations are presented. Characterizations are also derived when a general DAE system can be transformed into one of these structured representations. Approaches for computing the structural information and the described transformations are derived that can be directly implemented as numerical methods. The results are demonstrated with a large number of examples.
Keywords
Port-Hamiltonian system; Dissipative Hamiltonian system; Differential–algebraic equation; Lagrange structure; Dirac structure; Matrix pencil
Citation
- Journal: Mathematics of Control, Signals, and Systems
- Year: 2023
- Volume: 35
- Issue: 3
- Pages: 541–584
- Publisher: Springer Science and Business Media LLC
- DOI: 10.1007/s00498-023-00349-2
BibTeX
@article{Mehrmann_2023,
title={{Differential–algebraic systems with dissipative Hamiltonian structure}},
volume={35},
ISSN={1435-568X},
DOI={10.1007/s00498-023-00349-2},
number={3},
journal={Mathematics of Control, Signals, and Systems},
publisher={Springer Science and Business Media LLC},
author={Mehrmann, Volker and van der Schaft, Arjan},
year={2023},
pages={541--584}
}
References
- Achleitner F, Arnold A, Mehrmann V (2021) Hypocoercivity and controllability in linear semi-dissipative ODEs and DAEs. ZAMM Z Angew Math Mech (in press)
- VI Arnol’d. Arnol’d VI (2013) Mathematical methods of classical mechanics, vol 60. Springer, New York (2013)
- Beattie, C. A., Mehrmann, V. & Van Dooren, P. Robust port-Hamiltonian representations of passive systems. Automatica vol. 100 182–186 (2019) – 10.1016/j.automatica.2018.11.013
- C Beattie. Beattie C, Mehrmann V, Xu H, Zwart H (2018) Port-Hamiltonian descriptor systems. Math Control Signals Syst 30(17):1–27 (2018)
- P Benner. Benner P, Byers R, Faßbender H, Mehrmann V, Watkins D (2000) Cholesky-like factorizations of skew-symmetric matrices. Electron Trans Numer Anal 11:85–93 (2000)
- Breedveld PC (2008) Modeling and simulation of dynamic systems using bond graphs. EOLSS Publishers Co. Ltd./UNESCO, Oxford, pp 128–173
- Brüll T, Mehrmann V (2007) STCSSP: A FORTRAN 77 routine to compute a structured staircase form for a (skew-)symmetric/(skew-)symmetric matrix pencil. Preprint 31-2007, Institut für Mathematik, TU Berlin
- R Byers. Byers R, Mehrmann V, Xu H (2007) A structured staircase algorithm for skew-symmetric/symmetric pencils. Electron Trans Numer Anal 26:1–13 (2007)
- Camlibel, M. K. & van der Schaft, A. J. Port-Hamiltonian Systems Theory and Monotonicity. SIAM Journal on Control and Optimization vol. 61 2193–2221 (2023) – 10.1137/22m1503749
- Camlibel, M. K. & van der Schaft, A. J. Incrementally port-Hamiltonian systems. 52nd IEEE Conference on Decision and Control 2538–2543 (2013) doi:10.1109/cdc.2013.6760262 – 10.1109/cdc.2013.6760262
- Courant, T. J. Dirac manifolds. Transactions of the American Mathematical Society vol. 319 631–661 (1990) – 10.1090/s0002-9947-1990-0998124-1
- Singular Control Systems. Lecture Notes in Control and Information Sciences (Springer-Verlag, 1989). doi:10.1007/bfb0002475 – 10.1007/bfb0002475
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Eberard, D., Maschke, B. M. & van der Schaft, A. J. An extension of Hamiltonian systems to the thermodynamic phase space: Towards a geometry of nonreversible processes. Reports on Mathematical Physics vol. 60 175–198 (2007) – 10.1016/s0034-4877(07)00024-9
- Egger, H. & Kugler, T. Damped wave systems on networks: exponential stability and uniform approximations. Numerische Mathematik vol. 138 839–867 (2017) – 10.1007/s00211-017-0924-4
- Egger, H., Kugler, T., Liljegren-Sailer, B., Marheineke, N. & Mehrmann, V. On Structure-Preserving Model Reduction for Damped Wave Propagation in Transport Networks. SIAM Journal on Scientific Computing vol. 40 A331–A365 (2018) – 10.1137/17m1125303
- Eich-Soellner, E. & Führer, C. Numerical Methods in Multibody Dynamics. European Consortium for Mathematics in Industry (Vieweg+Teubner Verlag, 1998). doi:10.1007/978-3-663-09828-7 – 10.1007/978-3-663-09828-7
- Emmrich, E. & Mehrmann, V. Operator Differential-Algebraic Equations Arising in Fluid Dynamics. Computational Methods in Applied Mathematics vol. 13 443–470 (2013) – 10.1515/cmam-2013-0018
- Freund, R. W. The SPRIM Algorithm for Structure-Preserving Order Reduction of General RCL Circuits. Lecture Notes in Electrical Engineering 25–52 (2011) doi:10.1007/978-94-007-0089-5_2 – 10.1007/978-94-007-0089-5_2
- FR Gantmacher. Gantmacher FR (1959) Theory of matrices, vol 1. Chelsea, New York (1959)
- Gernandt, H., Haller, F. E. & Reis, T. A Linear Relation Approach to Port-Hamiltonian Differential-Algebraic Equations. SIAM Journal on Matrix Analysis and Applications vol. 42 1011–1044 (2021) – 10.1137/20m1371166
- Golo G, van der Schaft AJ, Breedveld PC, Maschke BM (2003) Hamiltonian formulation of bond graphs. In: Rantzer A, Johansson R (eds) Nonlinear and hybrid systems in automotive control. Springer, Heidelberg, pp 351–372
- Günther, M., Bartel, A., Jacob, B. & Reis, T. Dynamic iteration schemes and port‐Hamiltonian formulation in coupled differential‐algebraic equation circuit simulation. International Journal of Circuit Theory and Applications vol. 49 430–452 (2020) – 10.1002/cta.2870
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1
- Kunkel, P. & Mehrmann, V. Differential-Algebraic Equations. EMS Textbooks in Mathematics (2006) doi:10.4171/017 – 10.4171/017
- Kunkel, P. & Mehrmann, V. Formal adjoints of linear DAE operators and their role in optimal control. The Electronic Journal of Linear Algebra vol. 22 (2011) – 10.13001/1081-3810.1466
- Liesen, J. & Mehrmann, V. Linear Algebra. Springer Undergraduate Mathematics Series (Springer International Publishing, 2015). doi:10.1007/978-3-319-24346-7 – 10.1007/978-3-319-24346-7
- Maschke, B. M. & van der Schaft, A. J. Port-Controlled Hamiltonian Systems: Modelling Origins and Systemtheoretic Properties. IFAC Proceedings Volumes vol. 25 359–365 (1992) – 10.1016/s1474-6670(17)52308-3
- Mehl, C., Mehrmann, V. & Wojtylak, M. Linear Algebra Properties of Dissipative Hamiltonian Descriptor Systems. SIAM Journal on Matrix Analysis and Applications vol. 39 1489–1519 (2018) – 10.1137/18m1164275
- Mehl, C., Mehrmann, V. & Wojtylak, M. Distance problems for dissipative Hamiltonian systems and related matrix polynomials. Linear Algebra and its Applications vol. 623 335–366 (2021) – 10.1016/j.laa.2020.05.026
- Mehrmann, V. & Morandin, R. Structure-preserving discretization for port-Hamiltonian descriptor systems. 2019 IEEE 58th Conference on Decision and Control (CDC) 6863–6868 (2019) doi:10.1109/cdc40024.2019.9030180 – 10.1109/cdc40024.2019.9030180
- Mehrmann, V. & Unger, B. Control of port-Hamiltonian differential-algebraic systems and applications. Acta Numerica vol. 32 395–515 (2023) – 10.1017/s0962492922000083
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- van der Schaft, A. Port-Hamiltonian systems: an introductory survey. Proceedings of the International Congress of Mathematicians Madrid, August 22–30, 2006 1339–1365 (2007) doi:10.4171/022-3/65 – 10.4171/022-3/65
- AJ van der Schaft. van der Schaft AJ, Maschke BM (1995) The Hamiltonian formulation of energy conserving physical systems with external ports. Arch. Elektron. Übertragungstech. 45:362–371 (1995)
- van der Schaft, A. J. & Maschke, B. M. Port-Hamiltonian Systems on Graphs. SIAM Journal on Control and Optimization vol. 51 906–937 (2013) – 10.1137/110840091
- Scholz L (2017) Condensed forms for linear port-Hamiltonian descriptor systems. Preprint 09–2017, Institut für Mathematik, Technische Universität Berlin
- van der Schaft, A. L2-Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer International Publishing, 2017). doi:10.1007/978-3-319-49992-5 – 10.1007/978-3-319-49992-5
- van der Schaft, A. J. Port-Hamiltonian Differential-Algebraic Systems. Surveys in Differential-Algebraic Equations I 173–226 (2013) doi:10.1007/978-3-642-34928-7_5 – 10.1007/978-3-642-34928-7_5
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- van der Schaft, A. & Maschke, B. Generalized port-Hamiltonian DAE systems. Systems & Control Letters vol. 121 31–37 (2018) – 10.1016/j.sysconle.2018.09.008
- van der Schaft, A. & Maschke, B. Dirac and Lagrange Algebraic Constraints in Nonlinear Port-Hamiltonian Systems. Vietnam Journal of Mathematics vol. 48 929–939 (2020) – 10.1007/s10013-020-00419-x