Authors

Theodore James Courant

Abstract

A Dirac structure on a vector space V V is a subspace of V V with a skew form on it. It is shown that these structures correspond to subspaces of V V V \oplus {V^{\ast }[[:space:]]} satisfying a maximality condition, and having the property that a certain symmetric form on V V V \oplus {V^{\ast }[[:space:]]} vanishes when restricted to them. Dirac structures on a vector space are analyzed in terms of bases, and a generalized Cayley transformation is defined which takes a Dirac structure to an element of O ( V ) O(V) . Finally a method is given for passing a Dirac structure on a vector space to a Dirac structure on any subspace. Dirac structures on vector spaces are generalized to smooth Dirac structures on a manifold P P , which are defined to be smooth subbundles of the bundle T P T P TP \oplus {T^{\ast }[[:space:]]}P satisfying pointwise the properties of the linear case. If a bundle L T P T P L \subset TP \oplus {T^{\ast }[[:space:]]}P defines a Dirac structure on P P , then we call L L a Dirac bundle over P P . A 3 3 -tensor is defined on Dirac bundles whose vanishing is the integrability condition of the Dirac structure. The basic examples of integrable Dirac structures are Poisson and presymplectic manifolds; in these cases the Dirac bundle is the graph of a bundle map, and the integrability tensors are [ B , B ] [B,B] and d Ω d\Omega respectively. A function f f on a Dirac manifold is called admissible if there is a vector field X X such that the pair ( X , d f ) (X,df) is a section of the Dirac bundle L L ; the pair ( X , d f ) (X,df) is called an admissible section. The set of admissible functions is shown to be a Poisson algebra. A process is given for passing Dirac structures to a submanifold Q Q of a Dirac manifold P P . The induced bracket on admissible functions on Q Q is in fact the Dirac bracket as defined by Dirac for constrained submanifolds.

Citation

  • Journal: Transactions of the American Mathematical Society
  • Year: 2012
  • Volume: 319
  • Issue: 2
  • Pages: 631–661
  • Publisher: American Mathematical Society (AMS)
  • DOI: 10.1090/s0002-9947-1990-0998124-1

BibTeX

@article{Courant_1990,
  title={{Dirac manifolds}},
  volume={319},
  ISSN={1088-6850},
  DOI={10.1090/s0002-9947-1990-0998124-1},
  number={2},
  journal={Transactions of the American Mathematical Society},
  publisher={American Mathematical Society (AMS)},
  author={Courant, Theodore James},
  year={1990},
  pages={631--661}
}

Download the bib file

References

  • Abraham, Ralph, Foundations of mechanics (1978)
  • Dazord, P. Feuilletages à singularités. Indagationes Mathematicae (Proceedings) 88, 21–39 (1985) – 10.1016/s1385-7258(85)80017-2
  • Gotay, M. J., Nester, J. M. & Hinds, G. Presymplectic manifolds and the Dirac–Bergmann theory of constraints. Journal of Mathematical Physics 19, 2388–2399 (1978) – 10.1063/1.523597
  • Guillemin, V. & Sternberg, S. Geometric Asymptotics. Mathematical Surveys and Monographs (1977) doi:10.1090/surv/014 – 10.1090/surv/014
  • Hermann, Robert, Lie algebras and quantum mechanics (1970)
  • Lichnerowicz, André, Les variétés de Poisson et leurs algèbres de Lie associées. J. Differential Geometry (1977)
  • Littlejohn, R. G. A guiding center Hamiltonian: A new approach. Journal of Mathematical Physics 20, 2445–2458 (1979) – 10.1063/1.524053
  • Littlejohn, R. G. Hamiltonian formulation of guiding center motion. The Physics of Fluids 24, 1730–1749 (1981) – 10.1063/1.863594
  • Mackenzie, K. Lie Groupoids and Lie Algebroids in Differential Geometry. (1987) doi:10.1017/cbo9780511661839 – 10.1017/cbo9780511661839
  • Marsden, J. E. & Ratiu, T. Reduction of Poisson manifolds. Lett Math Phys 11, 161–169 (1986) – 10.1007/bf00398428
  • Martinet, J. Sur les singularités des formes différentielles. Annales de l’institut Fourier 20, 95–178 (1970) – 10.5802/aif.340
  • Oh, Y.-G. Some remarks on the transverse poisson structures of coadjoint orbits. Lett Math Phys 12, 87–91 (1986) – 10.1007/bf00416457
  • Omohundro, S. Geometric Hamiltonian structures and perturbation theory. Lecture Notes in Physics 91–120 doi:10.1007/bfb0018331 – 10.1007/bfb0018331
  • Singularities \& dynamical systems (1985)
  • Pnevmatikos, Spyros N., Structures hamiltoniennes en présence de contraintes. C. R. Acad. Sci. Paris S'{e}r. A-B (1979)
  • Pnevmatikos, S. N. Structures symplectiques singulières génériques. Annales de l’institut Fourier 34, 201–218 (1984) – 10.5802/aif.983
  • Śniatycki, Jędrzej, Dirac brackets in geometric dynamics. Ann. Inst. H. Poincar'{e} Sect. A (N.S.) (1974)
  • Sussmann, H. J. Orbits of families of vector fields and integrability of distributions. Trans. Amer. Math. Soc. 180, 171–188 (1973) – 10.2307/1996660
  • Vinogradov, A. M. & Krasil’shchik, I. S. WHAT IS THE HAMILTONIAN FORMALISM? Russ. Math. Surv. 30, 177–202 (1975) – 10.1070/rm1975v030n01abeh001403
  • Weinstein, Alan, The local structure of Poisson manifolds. J. Differential Geom. (1983)
  • Śniatycki, J. & Weinstein, A. Reduction and quantization for singular momentum mappings. Lett Math Phys 7, 155–161 (1983) – 10.1007/bf00419934