A differential geometric description of thermodynamics in continuum mechanics with application to Fourier–Navier–Stokes fluids
Authors
F. Califano, R. Rashad, S. Stramigioli
Abstract
A description of thermodynamics for continuum mechanical systems is presented in the coordinate-free language of exterior calculus. First, a careful description of the mathematical tools that are needed to formulate the relevant conservation laws is given. Second, following an axiomatic approach, the two thermodynamic principles will be described, leading to a consistent description of entropy creation mechanisms on manifolds. Third, a specialization to Fourier–Navier–Stokes fluids will be carried through.
Citation
- Journal: Physics of Fluids
- Year: 2022
- Volume: 34
- Issue: 10
- Pages:
- Publisher: AIP Publishing
- DOI: 10.1063/5.0119517
BibTeX
@article{Califano_2022,
title={{A differential geometric description of thermodynamics in continuum mechanics with application to Fourier–Navier–Stokes fluids}},
volume={34},
ISSN={1089-7666},
DOI={10.1063/5.0119517},
number={10},
journal={Physics of Fluids},
publisher={AIP Publishing},
author={Califano, F. and Rashad, R. and Stramigioli, S.},
year={2022}
}
References
- Kanso, E. et al. On the geometric character of stress in continuum mechanics. Z. angew. Math. Phys. 58, 843–856 (2007) – 10.1007/s00033-007-6141-8
- Asinari, P. & Chiavazzo, E. Overview of the entropy production of incompressible and compressible fluid dynamics. Meccanica 51, 1245–1255 (2015) – 10.1007/s11012-015-0284-z
- Manifolds, Tensor Analysis, and Applications
- The Geometry of Physics: An Introduction (2011)
- Global Analysis. Proceedings of Symposia in Pure Mathematics (American Mathematical Society, 1970). doi:10.1090/pspum/016 – 10.1090/pspum/016
- Reduction and Hamiltonian structures on duals of semidirect product Lie algebras. Fluids and Plasmas: Geometry and Dynamics (1984)
- Marsden, J. E., Raţiu, T. & Weinstein, A. Semidirect products and reduction in mechanics. Trans. Amer. Math. Soc. 281, 147–177 (1984) – 10.1090/s0002-9947-1984-0719663-1
- Morrison, P. J. Hamiltonian description of the ideal fluid. Rev. Mod. Phys. 70, 467–521 (1998) – 10.1103/revmodphys.70.467
- Rashad, R., Califano, F., Schuller, F. P. & Stramigioli, S. Port-Hamiltonian modeling of ideal fluid flow: Part I. Foundations and kinetic energy. Journal of Geometry and Physics 164, 104201 (2021) – 10.1016/j.geomphys.2021.104201
- Rashad, R., Califano, F., Schuller, F. P. & Stramigioli, S. Port-Hamiltonian modeling of ideal fluid flow: Part II. Compressible and incompressible flow. Journal of Geometry and Physics 164, 104199 (2021) – 10.1016/j.geomphys.2021.104199
- Mora, L. A., Le Gorrec, Y., Matignon, D., Ramirez, H. & Yuz, J. I. On port-Hamiltonian formulations of 3-dimensional compressible Newtonian fluids. Physics of Fluids 33, (2021) – 10.1063/5.0067784
- Van der Schaft, A. & Maschke, B. Geometry of Thermodynamic Processes. Entropy 20, 925 (2018) – 10.3390/e20120925
- Grmela, M. Contact Geometry of Mesoscopic Thermodynamics and Dynamics. Entropy 16, 1652–1686 (2014) – 10.3390/e16031652
- Arnold, D. N., Falk, R. S. & Winther, R. Finite element exterior calculus, homological techniques, and applications. Acta Numerica 15, 1–155 (2006) – 10.1017/s0962492906210018
- Compatible Spatial Discretizations. The IMA Volumes in Mathematics and its Applications (Springer New York, 2006). doi:10.1007/0-387-38034-5 – 10.1007/0-387-38034-5
- Gawlik, E. S. & Gay-Balmaz, F. A Variational Finite Element Discretization of Compressible Flow. Found Comput Math 21, 961–1001 (2020) – 10.1007/s10208-020-09473-w
- Califano, F., Rashad, R., Schuller, F. P. & Stramigioli, S. Energetic decomposition of distributed systems with moving material domains: The port-Hamiltonian model of fluid-structure interaction. Journal of Geometry and Physics 175, 104477 (2022) – 10.1016/j.geomphys.2022.104477
- Arnold, V. I. & Khesin, B. A. Topological Methods in Hydrodynamics. Annu. Rev. Fluid Mech. 24, 145–166 (1992) – 10.1146/annurev.fl.24.010192.001045
- Geometrical Methods of Mathematical Physics (1980)
- Califano, F., Rashad, R., Schuller, F. P. & Stramigioli, S. Geometric and energy-aware decomposition of the Navier–Stokes equations: A port-Hamiltonian approach. Physics of Fluids 33, (2021) – 10.1063/5.0048359
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics 42, 166–194 (2002) – 10.1016/s0393-0440(01)00083-3