Modelling and structure-preserving discretization of Maxwell’s equations as port-Hamiltonian system
Authors
Gabriel Payen, Denis Matignon, Ghislain Haine
Abstract
The modelling and discretization of the boundary controlled 3D Maxwell’s equations as a port-Hamiltonian system is addressed. The proposed scheme, based on the Partitioned Finite Element Method (PFEM), originally proposed in Cardoso-Ribeiro et al. (2018), preserves the Dirac structure at the discrete level. Two types of damping phenomena are taken into account: Joule’s effect, and a matrix-valued impedance at the boundary, both being preserved by PFEM, as presented in Serhani et al. (2019a).
Keywords
Maxwell’s equations; port-Hamiltonian system; Partitioned Finite Element Method; Dirac structure; impedance; boundary control; observation
Citation
- Journal: IFAC-PapersOnLine
- Year: 2020
- Volume: 53
- Issue: 2
- Pages: 7581–7586
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2020.12.1355
- Note: 21st IFAC World Congress- Berlin, Germany, 11–17 July 2020
BibTeX
@article{Payen_2020,
title={{Modelling and structure-preserving discretization of Maxwell’s equations as port-Hamiltonian system}},
volume={53},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2020.12.1355},
number={2},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Payen, Gabriel and Matignon, Denis and Haine, Ghislain},
year={2020},
pages={7581--7586}
}
References
- Beattie, C., Mehrmann, V., Xu, H. & Zwart, H. Linear port-Hamiltonian descriptor systems. Mathematics of Control, Signals, and Systems vol. 30 (2018) – 10.1007/s00498-018-0223-3
- Brugnoli, A., Alazard, D., Pommier-Budinger, V. & Matignon, D. Port-Hamiltonian formulation and symplectic discretization of plate models Part I: Mindlin model for thick plates. Applied Mathematical Modelling vol. 75 940–960 (2019) – 10.1016/j.apm.2019.04.035
- Brugnoli, A., Alazard, D., Pommier-Budinger, V. & Matignon, D. Port-Hamiltonian formulation and symplectic discretization of plate models Part II: Kirchhoff model for thin plates. Applied Mathematical Modelling vol. 75 961–981 (2019) – 10.1016/j.apm.2019.04.036
- Cardoso-Ribeiro, F. L., Matignon, D. & Lefèvre, L. A structure-preserving Partitioned Finite Element Method for the 2D wave equation. IFAC-PapersOnLine vol. 51 119–124 (2018) – 10.1016/j.ifacol.2018.06.033
- Duindam, (2009)
- Eberard, D., Maschke, B. M. & van der Schaft, A. J. On the interconnection structures of discretized port Hamiltonian systems. PAMM vol. 7 3030005–3030006 (2007) – 10.1002/pamm.200700422
- Farle, O., Klis, D., Jochum, M., Floch, O. & Dyczij-Edlinger, R. A port-hamiltonian finite-element formulation for the maxwell equations. 2013 International Conference on Electromagnetics in Advanced Applications (ICEAA) 324–327 (2013) doi:10.1109/iceaa.2013.6632246 – 10.1109/iceaa.2013.6632246
- Hecht, F. New development in freefem++. Journal of Numerical Mathematics vol. 20 (2012) – 10.1515/jnum-2012-0013
- Kotyczka, (2019)
- Langtangen, (2016)
- Monk, (2003)
- Serhani, A Partitioned Finite Element Method for the Structure-Preserving Discretization of Damped Infinite-Dimensional Port-Hamiltonian Systems with Boundary Control. (2019)
- Serhani, A., Matignon, D. & Haine, G. Partitioned Finite Element Method for port-Hamiltonian systems with Boundary Damping: Anisotropic Heterogeneous 2D wave equations. IFAC-PapersOnLine vol. 52 96–101 (2019) – 10.1016/j.ifacol.2019.08.017
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Vu, Port-Hamiltonian formulation for systems of conservation laws: application to plasma dynamics in Tokamak reactors. IFAC Proceedings (2012)
- Vu, N. M. T., Lefèvre, L. & Maschke, B. A structured control model for the thermo-magneto-hydrodynamics of plasmas in tokamaks. Mathematical and Computer Modelling of Dynamical Systems vol. 22 181–206 (2016) – 10.1080/13873954.2016.1154874
- Weiss, G. & Staffans, O. J. Maxwell’s Equations as a Scattering Passive Linear System. SIAM Journal on Control and Optimization vol. 51 3722–3756 (2013) – 10.1137/120869444