Structure-preserving discretization of Maxwell's equations as a port-Hamiltonian system
Authors
Ghislain Haine, Denis Matignon, Florian Monteghetti
Abstract
This work demonstrates the discretization of the boundary-controlled Maxwell equations, recast as a port-Hamiltonian system (pHs). After a reminder on the Stokes-Dirac structure associated with the Maxwell system, we introduce different partitioned weak formulations that preserve the pHs structure, and its associated power balance, at the semi-discrete level. These weak formulations are compared through numerical applications to closed non-perfectly conducting cavities and open waveguides under transverse approximation.
Keywords
Port-Hamiltonian systems; Structure-preserving method; Maxwell’s equations; Charge preservation; Impedance boundary condition
Citation
- Journal: IFAC-PapersOnLine
- Year: 2022
- Volume: 55
- Issue: 30
- Pages: 424–429
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2022.11.090
- Note: 25th International Symposium on Mathematical Theory of Networks and Systems MTNS 2022- Bayreuth, Germany, September 12-16, 2022
BibTeX
@article{Haine_2022,
title={{Structure-preserving discretization of Maxwell’s equations as a port-Hamiltonian system}},
volume={55},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2022.11.090},
number={30},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Haine, Ghislain and Matignon, Denis and Monteghetti, Florian},
year={2022},
pages={424--429}
}
References
- Abhyankar, PETSc/TS: A Modern Scalable ODE/DAE Solver Library. ArXiv e-prints (2018)
- Altmann, R. & Schulze, P. A port-Hamiltonian formulation of the Navier–Stokes equations for reactive flows. Systems & Control Letters vol. 100 51–55 (2017) – 10.1016/j.sysconle.2016.12.005
- Amestoy, P. R., Buttari, A., L’Excellent, J.-Y. & Mary, T. Performance and Scalability of the Block Low-Rank Multifrontal Factorization on Multicore Architectures. ACM Transactions on Mathematical Software vol. 45 1–26 (2019) – 10.1145/3242094
- Anees, A. & Angermann, L. Time Domain Finite Element Method for Maxwell’s Equations. IEEE Access vol. 7 63852–63867 (2019) – 10.1109/access.2019.2916394
- Assous, (2018)
- Beattie, C., Mehrmann, V., Xu, H. & Zwart, H. Linear port-Hamiltonian descriptor systems. Mathematics of Control, Signals, and Systems vol. 30 (2018) – 10.1007/s00498-018-0223-3
- Bof, (2013)
- Bueler, (2020)
- Buffa, A., Costabel, M. & Sheen, D. On traces for H(curl,Ω) in Lipschitz domains. Journal of Mathematical Analysis and Applications vol. 276 845–867 (2002) – 10.1016/s0022-247x(02)00455-9
- Campos Pinto, M., Mounier, M. & Sonnendrücker, E. Handling the divergence constraints in Maxwell and Vlasov–Maxwell simulations. Applied Mathematics and Computation vol. 272 403–419 (2016) – 10.1016/j.amc.2015.07.089
- Campos Pinto, M. & Sonnendrücker, E. Gauss-compatible Galerkin schemes for time-dependent Maxwell equations. Mathematics of Computation vol. 85 2651–2685 (2016) – 10.1090/mcom/3079
- Cardoso-Ribeiro, F. L., Matignon, D. & Lefèvre, L. A partitioned finite element method for power-preserving discretization of open systems of conservation laws. IMA Journal of Mathematical Control and Information vol. 38 493–533 (2020) – 10.1093/imamci/dnaa038
- Cervera, J., van der Schaft, A. J. & Baños, A. Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica vol. 43 212–225 (2007) – 10.1016/j.automatica.2006.08.014
- Cohen, (2002)
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Port-Hamiltonian Systems. Modeling and Control of Complex Physical Systems 53–130 (2009) doi:10.1007/978-3-642-03196-0_2 – 10.1007/978-3-642-03196-0_2
- Farle, A port-Hamiltonian finite-element formulation for the Maxwell equations. (2013)
- Geuzaine, C. & Remacle, J. Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities. International Journal for Numerical Methods in Engineering vol. 79 1309–1331 (2009) – 10.1002/nme.2579
- Haine, G. & Matignon, D. Incompressible Navier-Stokes Equation as port-Hamiltonian systems: velocity formulation versus vorticity formulation. IFAC-PapersOnLine vol. 54 161–166 (2021) – 10.1016/j.ifacol.2021.11.072
- Hernandez, V., Roman, J. E. & Vidal, V. SLEPc. ACM Transactions on Mathematical Software vol. 31 351–362 (2005) – 10.1145/1089014.1089019
- Joly, P. Variational Methods for Time-Dependent Wave Propagation Problems. Lecture Notes in Computational Science and Engineering 201–264 (2003) doi:10.1007/978-3-642-55483-4_6 – 10.1007/978-3-642-55483-4_6
- Li, J. Error analysis of fully discrete mixed finite element schemes for 3-D Maxwell’s equations in dispersive media. Computer Methods in Applied Mechanics and Engineering vol. 196 3081–3094 (2007) – 10.1016/j.cma.2006.12.009
- Makridakis, Ch. G. & Monk, P. Time-discrete finite element schemes for Maxwell’s equations. ESAIM: Mathematical Modelling and Numerical Analysis vol. 29 171–197 (1995) – 10.1051/m2an/1995290201711
- Monk, P. B. A Mixed Method for Approximating Maxwell’s Equations. SIAM Journal on Numerical Analysis vol. 28 1610–1634 (1991) – 10.1137/0728081
- Monk, P. An analysis of Nédélec’s method for the spatial discretization of Maxwell’s equations. Journal of Computational and Applied Mathematics vol. 47 101–121 (1993) – 10.1016/0377-0427(93)90093-q
- Monk, (2003)
- Nedelec, J. C. Mixed finite elements in ?3. Numerische Mathematik vol. 35 315–341 (1980) – 10.1007/bf01396415
- Payen, G., Matignon, D. & Haine, G. Modelling and structure-preserving discretization of Maxwell’s equations as port-Hamiltonian system. IFAC-PapersOnLine vol. 53 7581–7586 (2020) – 10.1016/j.ifacol.2020.12.1355
- Rashad, R., Califano, F., van der Schaft, A. J. & Stramigioli, S. Twenty years of distributed port-Hamiltonian systems: a literature review. IMA Journal of Mathematical Control and Information vol. 37 1400–1422 (2020) – 10.1093/imamci/dnaa018
- Rieben, R. N., Rodrigue, G. H. & White, D. A. A high order mixed vector finite element method for solving the time dependent Maxwell equations on unstructured grids. Journal of Computational Physics vol. 204 490–519 (2005) – 10.1016/j.jcp.2004.10.030
- Serhani, A partitioned finite element method for the structure-preserving discretization of damped infinite-dimensional port-Hamiltonian systems with boundary control. (2019)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Vu, (2014)
- Trang VU, N. M., LEFEVRE, L. & MASCHKE, B. Port-Hamiltonian formulation for systems of conservation laws: application to plasma dynamics in Tokamak reactors. IFAC Proceedings Volumes vol. 45 108–113 (2012) – 10.3182/20120829-3-it-4022.00016
- Kane Yee. Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media. IEEE Transactions on Antennas and Propagation vol. 14 302–307 (1966) – 10.1109/tap.1966.1138693
- Zangwill, (2012)
- Zemanian, (1965)