A partitioned finite element method for power-preserving discretization of open systems of conservation laws
Authors
Flávio Luiz Cardoso-Ribeiro, Denis Matignon, Laurent Lefèvre
Abstract
This paper presents a structure-preserving spatial discretization method for distributed parameter port-Hamiltonian systems. The class of considered systems are hyperbolic systems of two conservation laws in arbitrary spatial dimension and geometries. For these systems, a partitioned finite element method (PFEM) is derived, based on the integration by parts of one of the two conservation laws written in weak form. The non-linear one-dimensional shallow-water equation (SWE) is first considered as a motivation example. Then, the method is investigated on the example of the non-linear two-dimensional SWE. Complete derivation of the reduced finite-dimensional port-Hamiltonian system (pHs) is provided and numerical experiments are performed. Extensions to curvilinear (polar) coordinate systems, space-varying coefficients and higher-order pHs (Euler–Bernoulli beam equation) are provided.
Citation
- Journal: IMA Journal of Mathematical Control and Information
- Year: 2021
- Volume: 38
- Issue: 2
- Pages: 493–533
- Publisher: Oxford University Press (OUP)
- DOI: 10.1093/imamci/dnaa038
BibTeX
@article{Cardoso_Ribeiro_2020,
title={{A partitioned finite element method for power-preserving discretization of open systems of conservation laws}},
volume={38},
ISSN={1471-6887},
DOI={10.1093/imamci/dnaa038},
number={2},
journal={IMA Journal of Mathematical Control and Information},
publisher={Oxford University Press (OUP)},
author={Cardoso-Ribeiro, Flávio Luiz and Matignon, Denis and Lefèvre, Laurent},
year={2020},
pages={493--533}
}
References
- Alemi Ardakani, H. A symplectic integrator for dynamic coupling between nonlinear vessel motion with variable cross-section and bottom topography and interior shallow-water sloshing. Journal of Fluids and Structures vol. 65 30–43 (2016) – 10.1016/j.jfluidstructs.2016.03.013
- Arnold, D., Falk, R. & Winther, R. Finite element exterior calculus: from Hodge theory to numerical stability. Bulletin of the American Mathematical Society vol. 47 281–354 (2010) – 10.1090/s0273-0979-10-01278-4
- Arnold, D. N. Spaces of Finite Element Differential Forms. Springer INdAM Series 117–140 (2013) doi:10.1007/978-88-470-2592-9_9 – 10.1007/978-88-470-2592-9_9
- Baaiu, A. et al. Port-based modelling of mass transport phenomena. Mathematical and Computer Modelling of Dynamical Systems vol. 15 233–254 (2009) – 10.1080/13873950902808578
- Baaiu, A., Couenne, F., Lefevre, L., Le Gorrec, Y. & Tayakout, M. Structure-preserving infinite dimensional model reduction: Application to adsorption processes. Journal of Process Control vol. 19 394–404 (2009) – 10.1016/j.jprocont.2008.07.002
- Bossavit, Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism. IEE Proc A (1988)
- Bossavit, Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements (1998)
- Boyd, Chebyshev and Fourier Spectral Methods: Second Revised Edition (2001)
- Brugnoli, A., Alazard, D., Pommier-Budinger, V. & Matignon, D. Port-Hamiltonian formulation and symplectic discretization of plate models Part I: Mindlin model for thick plates. Applied Mathematical Modelling vol. 75 940–960 (2019) – 10.1016/j.apm.2019.04.035
- Brugnoli, A., Alazard, D., Pommier-Budinger, V. & Matignon, D. Port-Hamiltonian formulation and symplectic discretization of plate models Part II: Kirchhoff model for thin plates. Applied Mathematical Modelling vol. 75 961–981 (2019) – 10.1016/j.apm.2019.04.036
- Brugnoli, Partitioned finite element method for power-preserving structured discretization with mixed boundary conditions. Proceedings of the 21st IFAC World Congress (2020)
- Brugnoli, Numerical approximation of port-Hamiltonian systems for hyperbolic or parabolic PDEs with boundary control. (2020)
- Cardoso-Ribeiro, F. L., Brugnoli, A., Matignon, D. & Lefevre, L. Port-Hamiltonian modeling, discretization and feedback control of a circular water tank. 2019 IEEE 58th Conference on Decision and Control (CDC) 6881–6886 (2019) doi:10.1109/cdc40024.2019.9030007 – 10.1109/cdc40024.2019.9030007
- Cardoso-Ribeiro, Supplementary material for “Port-Hamiltonian modeling, discretization and feedback control of a circular water tank”. (2020)
- Cardoso-Ribeiro, F. L., Matignon, D. & Lefèvre, L. A structure-preserving Partitioned Finite Element Method for the 2D wave equation. IFAC-PapersOnLine vol. 51 119–124 (2018) – 10.1016/j.ifacol.2018.06.033
- Cardoso-Ribeiro, Supplementary material for “A Partitioned Finite Element Method for power-preserving discretization of open systems of conservation laws”. (2020)
- Cardoso-Ribeiro, F. L., Matignon, D. & Pommier-Budinger, V. Modeling of a Fluid-structure coupled system using port-Hamiltonian formulation. IFAC-PapersOnLine vol. 48 217–222 (2015) – 10.1016/j.ifacol.2015.10.242
- Cardoso-Ribeiro, F. L., Matignon, D. & Pommier-Budinger, V. Piezoelectric beam with distributed control ports: a power-preserving discretization using weak formulation.. IFAC-PapersOnLine vol. 49 290–297 (2016) – 10.1016/j.ifacol.2016.07.456
- Cardoso-Ribeiro, F. L., Matignon, D. & Pommier-Budinger, V. A port-Hamiltonian model of liquid sloshing in moving containers and application to a fluid-structure system. Journal of Fluids and Structures vol. 69 402–427 (2017) – 10.1016/j.jfluidstructs.2016.12.007
- Cardoso-Ribeiro, F. L., Matignon, D. & Pommier-Budinger, V. Port-Hamiltonian model of two-dimensional shallow water equations in moving containers. IMA Journal of Mathematical Control and Information vol. 37 1348–1366 (2020) – 10.1093/imamci/dnaa016
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Egger, H., Kugler, T., Liljegren-Sailer, B., Marheineke, N. & Mehrmann, V. On Structure-Preserving Model Reduction for Damped Wave Propagation in Transport Networks. SIAM Journal on Scientific Computing vol. 40 A331–A365 (2018) – 10.1137/17m1125303
- Farle, A port-Hamiltonian finite-element formulation for the transmission line. Proceedings of 21st International Symposium on Mathematical Theory of Networks and Systems, MTNS 2014 (2014)
- Farle, O., Baltes, R.-B. & Dyczij-Edlinger, R. Strukturerhaltende Diskretisierung verteilt-parametrischer Port-Hamiltonscher Systeme mittels finiter Elemente. at - Automatisierungstechnik vol. 62 500–511 (2014) – 10.1515/auto-2014-1093
- Farle, O., Klis, D., Jochum, M., Floch, O. & Dyczij-Edlinger, R. A port-hamiltonian finite-element formulation for the maxwell equations. 2013 International Conference on Electromagnetics in Advanced Applications (ICEAA) 324–327 (2013) doi:10.1109/iceaa.2013.6632246 – 10.1109/iceaa.2013.6632246
- Flanders, Differential Forms with Applications to the Physical Science (1963)
- Frankel, T. The Geometry of Physics. (2011) doi:10.1017/cbo9781139061377 – 10.1017/cbo9781139061377
- Golo, G., Talasila, V., van der Schaft, A. & Maschke, B. Hamiltonian discretization of boundary control systems. Automatica vol. 40 757–771 (2004) – 10.1016/j.automatica.2003.12.017
- Haine, Numerical analysis of a structure-preserving space-discretization for an anisotropic and heterogeneous boundary controlled $n$-dimensional wave equation as port-Hamiltonian system. (2020)
- Hamroun, B., Dimofte, A., Lefèvre, L. & Mendes, E. Control by Interconnection and Energy-Shaping Methods of Port Hamiltonian Models. Application to the Shallow Water Equations. European Journal of Control vol. 16 545–563 (2010) – 10.3166/ejc.16.545-563
- Hamroun, Port-based modelling for open channel irrigation systems. Trans. Fluid Mech. (2006)
- Hauschild, Model reduction techniques for linear constant coefficient port-Hamiltonian differential-algebraic systems. (2019)
- Hiemstra, R. R., Toshniwal, D., Huijsmans, R. H. M. & Gerritsma, M. I. High order geometric methods with exact conservation properties. Journal of Computational Physics vol. 257 1444–1471 (2014) – 10.1016/j.jcp.2013.09.027
- Kotyczka, P. Finite Volume Structure-Preserving Discretization of 1D Distributed-Parameter Port-Hamiltonian Systems. IFAC-PapersOnLine vol. 49 298–303 (2016) – 10.1016/j.ifacol.2016.07.457
- Kotyczka, P., Maschke, B. & Lefèvre, L. Weak form of Stokes–Dirac structures and geometric discretization of port-Hamiltonian systems. Journal of Computational Physics vol. 361 442–476 (2018) – 10.1016/j.jcp.2018.02.006
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Mehrmann, V. & Morandin, R. Structure-preserving discretization for port-Hamiltonian descriptor systems. 2019 IEEE 58th Conference on Decision and Control (CDC) 6863–6868 (2019) doi:10.1109/cdc40024.2019.9030180 – 10.1109/cdc40024.2019.9030180
- Moulla, R., Lefévre, L. & Maschke, B. Pseudo-spectral methods for the spatial symplectic reduction of open systems of conservation laws. Journal of Computational Physics vol. 231 1272–1292 (2012) – 10.1016/j.jcp.2011.10.008
- Olver, P. J. Applications of Lie Groups to Differential Equations. Graduate Texts in Mathematics (Springer New York, 1993). doi:10.1007/978-1-4612-4350-2 – 10.1007/978-1-4612-4350-2
- Ortega, R., van der Schaft, A., Castanos, F. & Astolfi, A. Control by Interconnection and Standard Passivity-Based Control of Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 53 2527–2542 (2008) – 10.1109/tac.2008.2006930
- Pasumarthy, Port-Hamiltonian formulation of shallow water equations with Coriolis force and topography. Proceedings of the 18th International Symposium on Mathematical Theory of Networks and Systems (MTNS 2008) (2008)
- Payen, G., Matignon, D. & Haine, G. Modelling and structure-preserving discretization of Maxwell’s equations as port-Hamiltonian system. IFAC-PapersOnLine vol. 53 7581–7586 (2020) – 10.1016/j.ifacol.2020.12.1355
- Rashad, R., Califano, F., van der Schaft, A. J. & Stramigioli, S. Twenty years of distributed port-Hamiltonian systems: a literature review. IMA Journal of Mathematical Control and Information vol. 37 1400–1422 (2020) – 10.1093/imamci/dnaa018
- Serhani, A., Haine, G. & Matignon, D. Anisotropic heterogeneous n-D heat equation with boundary control and observation: II. Structure-preserving discretization. IFAC-PapersOnLine vol. 52 57–62 (2019) – 10.1016/j.ifacol.2019.07.010
- Serhani, A., Matignon, D. & Haine, G. Partitioned Finite Element Method for port-Hamiltonian systems with Boundary Damping: Anisotropic Heterogeneous 2D wave equations. IFAC-PapersOnLine vol. 52 96–101 (2019) – 10.1016/j.ifacol.2019.08.017
- Seslija, M., Scherpen, J. M. A. & van der Schaft, A. Explicit simplicial discretization of distributed-parameter port-Hamiltonian systems. Automatica vol. 50 369–377 (2014) – 10.1016/j.automatica.2013.11.020
- Trenchant, V., Fares, Y., Ramirez, H. & Le Gorrec, Y. A port-Hamiltonian formulation of a 2D boundary controlled acoustic system. IFAC-PapersOnLine vol. 48 235–240 (2015) – 10.1016/j.ifacol.2015.10.245
- Trenchant, V., Ramirez, H., Le Gorrec, Y. & Kotyczka, P. Structure preserving spatial discretization of 2D hyperbolic systems using staggered grids finite difference. 2017 American Control Conference (ACC) 2491–2496 (2017) doi:10.23919/acc.2017.7963327 – 10.23919/acc.2017.7963327
- Tucsnak, Birkhäuser Advanced Texts Basler Lehrbücher. Observation and Control for Operator Semigroups (2009)
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Vu, N. M. T., Lefèvre, L., Nouailletas, R. & Brémond, S. Symplectic spatial integration schemes for systems of balance equations. Journal of Process Control vol. 51 1–17 (2017) – 10.1016/j.jprocont.2016.12.005
- Vu, N. M. T., Lefèvre, L. & Maschke, B. A structured control model for the thermo-magneto-hydrodynamics of plasmas in tokamaks. Mathematical and Computer Modelling of Dynamical Systems vol. 22 181–206 (2016) – 10.1080/13873954.2016.1154874
- Wu, Y., Hamroun, B., Gorrec, Y. L. & Maschke, B. Power preserving model reduction of 2D vibro-acoustic system: A port Hamiltonian approach. IFAC-PapersOnLine vol. 48 206–211 (2015) – 10.1016/j.ifacol.2015.10.240