Lagrange hydrodynamics as extended Euler hydrodynamics: Hamiltonian and GENERIC structures
Authors
Abstract
The extended Euler hydrodynamics proposed in Phys. Rev. Lett. 84 (2000) 3228 as hydrodynamics with correct solid limit is interpreted as a reconstruction of Lagrange hydrodynamics in the Eulerian setting. The geometrical formulation of the classical Euler and the classical Navier–Stokes–Fourier hydrodynamics is shown to be applicable also to the extended theory.
Citation
- Journal: Physics Letters A
- Year: 2002
- Volume: 296
- Issue: 2-3
- Pages: 97–104
- Publisher: Elsevier BV
- DOI: 10.1016/s0375-9601(02)00190-1
BibTeX
@article{Grmela_2002,
title={{Lagrange hydrodynamics as extended Euler hydrodynamics: Hamiltonian and GENERIC structures}},
volume={296},
ISSN={0375-9601},
DOI={10.1016/s0375-9601(02)00190-1},
number={2–3},
journal={Physics Letters A},
publisher={Elsevier BV},
author={Grmela, Miroslav},
year={2002},
pages={97--104}
}
References
- Temmen, H., Pleiner, H., Liu, M. & Brand, H. R. Convective Nonlinearity in Non-Newtonian Fluids. Phys. Rev. Lett. 84, 3228–3231 (2000) – 10.1103/physrevlett.84.3228
- Pleiner, H., Liu, M. & Brand, H. R. The structure of convective nonlinearities in polymer rheology. Rheologica Acta 39, 560–565 (2000) – 10.1007/s003970000100
- Arnold, V. Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. Annales de l’institut Fourier 16, 319–361 (1966) – 10.5802/aif.233
- Marsden, J. & Weinstein, A. Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids. Physica D: Nonlinear Phenomena 7, 305–323 (1983) – 10.1016/0167-2789(83)90134-3
- Lin, (1963)
- Variational principles in continuum mechanics. Proc. R. Soc. Lond. A 305, 1–25 (1968) – 10.1098/rspa.1968.0103
- Salmon, R. Hamiltonian Fluid Mechanics. Annu. Rev. Fluid Mech. 20, 225–256 (1988) – 10.1146/annurev.fl.20.010188.001301
- Hermann, (1973)
- Salamon, P., Ihrig, E. & Berry, R. S. A group of coordinate transformations which preserve the metric of Weinhold. Journal of Mathematical Physics 24, 2515–2520 (1983) – 10.1063/1.525629
- Mrugala, R., Nulton, J. D., Schön, J. C. & Salamon, P. Statistical approach to the geometric structure of thermodynamics. Phys. Rev. A 41, 3156–3160 (1990) – 10.1103/physreva.41.3156
- Grmela, M. Reciprocity relations in thermodynamics. Physica A: Statistical Mechanics and its Applications 309, 304–328 (2002) – 10.1016/s0378-4371(02)00564-2
- Arnold, (1989)
- Grmela, (1990)
- Grmela, M. Particle and bracket formulations of kinetic equations. Contemporary Mathematics 125–132 (1984) doi:10.1090/conm/028/751978 – 10.1090/conm/028/751978
- Grmela, M. & Öttinger, H. C. Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys. Rev. E 56, 6620–6632 (1997) – 10.1103/physreve.56.6620
- Öttinger, H. C. & Grmela, M. Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism. Phys. Rev. E 56, 6633–6655 (1997) – 10.1103/physreve.56.6633
- Grmela, M. Complex fluids subjected to external influences. Journal of Non-Newtonian Fluid Mechanics 96, 221–254 (2001) – 10.1016/s0377-0257(00)00186-5
- De Gennes, P. G. Dynamics of Entangled Polymer Solutions. I. The Rouse Model. Macromolecules 9, 587–593 (1976) – 10.1021/ma60052a011
- Doi, M. & Onuki, A. Dynamic coupling between stress and composition in polymer solutions and blends. J. Phys. II France 2, 1631–1656 (1992) – 10.1051/jp2:1992225
- Elafif, A., Grmela, M. & Lebon, G. Rheology and diffusion in simple and complex fluids. Journal of Non-Newtonian Fluid Mechanics 86, 253–275 (1999) – 10.1016/s0377-0257(98)00211-0
- Temmen, H., Pleiner, H., Liu, M. & Brand, H. R. Temmenet al.Reply: Phys. Rev. Lett. 86, 745–745 (2001) – 10.1103/physrevlett.86.745
- Beris, A. N., Graham, M. D., Karlin, I. & Öttinger, H. C. Comment on “Convective Nonlinearity in Non-Newtonian Fluids”. Phys. Rev. Lett. 86, 744–744 (2001) – 10.1103/physrevlett.86.744