Geometric spatial reduction for port-Hamiltonian systems
Authors
Ngoc Minh Trang Vu, Laurent Lefèvre, Bernhard Maschke
Abstract
A geometric spatial reduction method is presented in this paper. It applies to port Hamiltonian models for open systems of balance equations. It is based on projections which make use of the spatial symmetries in the model and preserve the “natural” power pairing. Reductions from 3D to 2D and 1D domains are illustrated via two examples. The first one is a vibro-acoustic system with cylindrical symmetry where 3D–2D reduction is applied. The second one is the system of two coupled parabolic equations describing the poloidal magnetic flux diffusion and heat radial transport in tokamak reactors. In this latter example the toroidal symmetry allows to perform a 3D–1D reduction. Obtained reduced models are compared with the common control models found in the literature for these two examples.
Keywords
Geometric reduction; Distributed parameters systems; Port Hamiltonian systems; Tokamak plasma control; Vibro-acoustic system
Citation
- Journal: Systems & Control Letters
- Year: 2019
- Volume: 125
- Issue:
- Pages: 1–8
- Publisher: Elsevier BV
- DOI: 10.1016/j.sysconle.2019.01.002
BibTeX
@article{Vu_2019,
title={{Geometric spatial reduction for port-Hamiltonian systems}},
volume={125},
ISSN={0167-6911},
DOI={10.1016/j.sysconle.2019.01.002},
journal={Systems & Control Letters},
publisher={Elsevier BV},
author={Vu, Ngoc Minh Trang and Lefèvre, Laurent and Maschke, Bernhard},
year={2019},
pages={1--8}
}
References
- Marsden, J. E. & Ratiu, T. Reduction of Poisson manifolds. Letters in Mathematical Physics vol. 11 161–169 (1986) – 10.1007/bf00398428
- Marsden, J. E., Ratiu, T. & Weinstein, A. Reduction and Hamiltonian structures on duals of semidirect product Lie algebras. Contemporary Mathematics 55–100 (1984) doi:10.1090/conm/028/751975 – 10.1090/conm/028/751975
- Blankenstein, G. & van der Schaft, A. J. Symmetry and reduction in implicit generalized Hamiltonian systems. Reports on Mathematical Physics vol. 47 57–100 (2001) – 10.1016/s0034-4877(01)90006-0
- BRIDGES, T. J. Multi-symplectic structures and wave propagation. Mathematical Proceedings of the Cambridge Philosophical Society vol. 121 147–190 (1997) – 10.1017/s0305004196001429
- Reich, S. Multi-Symplectic Runge–Kutta Collocation Methods for Hamiltonian Wave Equations. Journal of Computational Physics vol. 157 473–499 (2000) – 10.1006/jcph.1999.6372
- Bridges, T. J. & Reich, S. Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity. Physics Letters A vol. 284 184–193 (2001) – 10.1016/s0375-9601(01)00294-8
- Hairer, (2002)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Kotyczka, P., Maschke, B. & Lefèvre, L. Weak form of Stokes–Dirac structures and geometric discretization of port-Hamiltonian systems. Journal of Computational Physics vol. 361 442–476 (2018) – 10.1016/j.jcp.2018.02.006
- Collet, M., David, P. & Berthillier, M. Active acoustical impedance using distributed electrodynamical transducers. The Journal of the Acoustical Society of America vol. 125 882–894 (2009) – 10.1121/1.3026329
- Collet, Semi-active optimization of 2D waves dispersion into shunted piezocomposite systems for controlling acoustic interaction. (2011)
- Vu, N. M. T., Lefèvre, L. & Maschke, B. A structured control model for the thermo-magneto-hydrodynamics of plasmas in tokamaks. Mathematical and Computer Modelling of Dynamical Systems vol. 22 181–206 (2016) – 10.1080/13873954.2016.1154874
- Cohen, The topology of fiber bundles. Lect. Notes (1998)
- Bott, (1982)
- Audin, (2004)
- Frankel, (2004)
- Wesson, (2004)
- Fusion, tokamaks, and plasma control: an introduction and tutorial. IEEE Control Systems vol. 25 30–43 (2005) – 10.1109/mcs.2005.1512794
- Emerging applications in tokamak plasma control. IEEE Control Systems vol. 26 35–63 (2006) – 10.1109/mcs.2006.1615272
- Ariola, Magnetic control of tokamak plasmas. (2008)
- Blum, (1989)
- VU, N. M. T., LEFEVRE, L., NOUAILLETAS, R. & BREMOND, S. Geometric discretization for a plasma control model. IFAC Proceedings Volumes vol. 46 755–760 (2013) – 10.3182/20130204-3-fr-2033.00098
- Macchelli, Modeling and control of complex physical systems - the port-hamiltonian approach. (2009)
- Felici, F. & Sauter, O. Non-linear model-based optimization of actuator trajectories for tokamak plasma profile control. Plasma Physics and Controlled Fusion vol. 54 025002 (2012) – 10.1088/0741-3335/54/2/025002
- Vu, N. M. T., Lefèvre, L., Nouailletas, R. & Brémond, S. Symplectic spatial integration schemes for systems of balance equations. Journal of Process Control vol. 51 1–17 (2017) – 10.1016/j.jprocont.2016.12.005
- Seslija, M., Scherpen, J. M. A. & van der Schaft, A. Explicit simplicial discretization of distributed-parameter port-Hamiltonian systems. Automatica vol. 50 369–377 (2014) – 10.1016/j.automatica.2013.11.020