Energetic decomposition of distributed systems with moving material domains: The port-Hamiltonian model of fluid-structure interaction
Authors
Federico Califano, Ramy Rashad, Frederic P. Schuller, Stefano Stramigioli
Abstract
We introduce the geometric structure underlying the port-Hamiltonian models for distributed parameter systems exhibiting moving material domains. The first part of the paper aims at introducing the differential geometric tools needed to represent infinite-dimensional systems on time–varying spatial domains in a port–based framework. A throughout description on the way we extend the structure presented in the seminal work [25], where only fixed spatial domains were considered, is carried through. As application of the proposed structure, we show how to model in a completely coordinate-free way the 3D fluid–structure interaction model for a rigid body immersed in an incompressible viscous flow as an interconnection of open dynamical subsystems.
Keywords
Port-Hamiltonian system; Geometric fluid-mechanics; Fluid structure interaction
Citation
- Journal: Journal of Geometry and Physics
- Year: 2022
- Volume: 175
- Issue:
- Pages: 104477
- Publisher: Elsevier BV
- DOI: 10.1016/j.geomphys.2022.104477
BibTeX
@article{Califano_2022,
title={{Energetic decomposition of distributed systems with moving material domains: The port-Hamiltonian model of fluid-structure interaction}},
volume={175},
ISSN={0393-0440},
DOI={10.1016/j.geomphys.2022.104477},
journal={Journal of Geometry and Physics},
publisher={Elsevier BV},
author={Califano, Federico and Rashad, Ramy and Schuller, Frederic P. and Stramigioli, Stefano},
year={2022},
pages={104477}
}
References
- Abraham, (2012)
- Califano, F. et al. Decoding and realising flapping flight with port-Hamiltonian system theory. Annual Reviews in Control vol. 51 37–46 (2021) – 10.1016/j.arcontrol.2021.03.009
- Califano, F., Rashad, R., Schuller, F. P. & Stramigioli, S. Geometric and energy-aware decomposition of the Navier–Stokes equations: A port-Hamiltonian approach. Physics of Fluids vol. 33 (2021) – 10.1063/5.0048359
- Cardoso-Ribeiro, F. L., Matignon, D. & Pommier-Budinger, V. Modeling of a Fluid-structure coupled system using port-Hamiltonian formulation. IFAC-PapersOnLine vol. 48 217–222 (2015) – 10.1016/j.ifacol.2015.10.242
- Diagne, M. & Maschke, B. Port Hamiltonian formulation of a system of two conservation laws with a moving interface. European Journal of Control vol. 19 495–504 (2013) – 10.1016/j.ejcon.2013.09.001
- Duindam, (2009)
- Frankel, (2011)
- Fusca, (2018)
- Gilbert, (2019)
- Glass, O. & Sueur, F. The movement of a solid in an incompressible perfect fluid as a geodesic flow. Proceedings of the American Mathematical Society vol. 140 2155–2168 (2011) – 10.1090/s0002-9939-2011-11219-x
- Jacobs,
- Kanso, E., Marsden, J. E., Rowley, C. W. & Melli-Huber, J. B. Locomotion of Articulated Bodies in a Perfect Fluid. Journal of Nonlinear Science vol. 15 255–289 (2005) – 10.1007/s00332-004-0650-9
- Kanso, E. et al. On the geometric character of stress in continuum mechanics. Zeitschrift für angewandte Mathematik und Physik vol. 58 843–856 (2007) – 10.1007/s00033-007-6141-8
- Mahony, Vision based control of aerial robotic vehicles using the port hamiltonian framework. (2011)
- Mora, L. A., Yuz, J. I., Ramirez, H. & Gorrec, Y. L. A port-Hamiltonian Fluid-Structure Interaction Model for the Vocal folds . IFAC-PapersOnLine vol. 51 62–67 (2018) – 10.1016/j.ifacol.2018.06.016
- Mora, L. A., Yann, L. G., Ramirez, H. & Yuz, J. Fluid-Structure Port-Hamiltonian Model for Incompressible Flows in Tubes with Time Varying Geometries. Mathematical and Computer Modelling of Dynamical Systems vol. 26 409–433 (2020) – 10.1080/13873954.2020.1786841
- Planas, G. & Sueur, F. On the “viscous incompressible fluid + rigid body” system with Navier conditions. Annales de l’Institut Henri Poincaré C, Analyse non linéaire vol. 31 55–80 (2014) – 10.1016/j.anihpc.2013.01.004
- Rashad, (2021)
- Rashad, R., Califano, F., van der Schaft, A. J. & Stramigioli, S. Twenty years of distributed port-Hamiltonian systems: a literature review. IMA Journal of Mathematical Control and Information vol. 37 1400–1422 (2020) – 10.1093/imamci/dnaa018
- Rashad, R., Califano, F., Brugnoli, A., Schuller, F. P. & Stramigioli, S. Exterior and vector calculus views of incompressible Navier-Stokes port-Hamiltonian models. IFAC-PapersOnLine vol. 54 173–179 (2021) – 10.1016/j.ifacol.2021.11.074
- Rashad, Port-hamiltonian modeling of ideal fluid flow: part i. Foundations and kinetic energy. J. Geom. Phys. (2021)
- Rashad, Port-hamiltonian modeling of ideal fluid flow: part ii. Compressible and incompressible flow. J. Geom. Phys. (2021)
- Stramigioli, (2001)
- van der Schaft, Interconnected mechanical systems, part i: geometry of interconnection and implicit hamiltonian systems. (1997)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Vankerschaver, J., Kanso, E. & Marsden, J. E. The dynamics of a rigid body in potential flow with circulation. Regular and Chaotic Dynamics vol. 15 606–629 (2010) – 10.1134/s1560354710040143
- Vu, N. M. T., Lefèvre, L. & Maschke, B. A structured control model for the thermo-magneto-hydrodynamics of plasmas in tokamaks. Mathematical and Computer Modelling of Dynamical Systems vol. 22 181–206 (2016) – 10.1080/13873954.2016.1154874