Boundary controlled irreversible port-Hamiltonian systems
Authors
Hector Ramirez, Yann Le Gorrec, Bernhard Maschke
Abstract
Boundary controlled irreversible port-Hamiltonian systems (BC-IPHS) defined on a 1-dimensional spatial domain are defined by extending the formulation of reversible BC-PHS to irreversible thermodynamic systems controlled at the boundaries of their spatial domain. The structure of BC-IPHS has clear physical interpretation, characterizing the coupling between energy storing and energy dissipating elements. By extending the definition of boundary port variables of BC-PHS to deal with the irreversible energy dissipation, a set of boundary port variables are defined such that BC-IPHS are passive with respect to a given set of conjugated inputs and outputs. As for finite dimensional IPHS, the first and second laws of Thermodynamics are satisfied as a structural property of the system. Several examples are given to illustrate the proposed approach.
Keywords
Port-Hamiltonian systems; Irreversible thermodynamics; Infinite dimensional systems
Citation
- Journal: Chemical Engineering Science
- Year: 2022
- Volume: 248
- Issue:
- Pages: 117107
- Publisher: Elsevier BV
- DOI: 10.1016/j.ces.2021.117107
BibTeX
@article{Ramirez_2022,
title={{Boundary controlled irreversible port-Hamiltonian systems}},
volume={248},
ISSN={0009-2509},
DOI={10.1016/j.ces.2021.117107},
journal={Chemical Engineering Science},
publisher={Elsevier BV},
author={Ramirez, Hector and Gorrec, Yann Le and Maschke, Bernhard},
year={2022},
pages={117107}
}
References
- Alonso, A. A. & Erik Ydstie, B. Process systems, passivity and the second law of thermodynamics. Computers & Chemical Engineering vol. 20 S1119–S1124 (1996) – 10.1016/0098-1354(96)00194-9
- Alonso, A. A. & Ydstie, B. E. Stabilization of distributed systems using irreversible thermodynamics. Automatica vol. 37 1739–1755 (2001) – 10.1016/s0005-1098(01)00140-6
- Alonso, A. A., Ydstie, B. E. & Banga, J. R. From irreversible thermodynamics to a robust control theory for distributed process systems. Journal of Process Control vol. 12 507–517 (2002) – 10.1016/s0959-1524(01)00017-8
- ARIS, R. What is Chemical Reactor Analysis? Elementary Chemical Reactor Analysis 1–7 (1989) doi:10.1016/b978-0-409-90221-1.50007-4 – 10.1016/b978-0-409-90221-1.50007-4
- Bird, (2006)
- Brayton, R. K. & Moser, J. K. A theory of nonlinear networks. I. Quarterly of Applied Mathematics vol. 22 1–33 (1964) – 10.1090/qam/169746
- Brockett, Control theory and analytical mechanics. (1977)
- Brogliato, (2020)
- Callen, (1985)
- Christofides, (2001)
- Christofides, P. D. & Daoutidis, P. Robust control of hyperbolic PDE systems. Chemical Engineering Science vol. 53 85–105 (1998) – 10.1016/s0009-2509(97)87571-9
- Cortés, J., van der Schaft, A. & Crouch, P. E. Characterization of Gradient Control Systems. SIAM Journal on Control and Optimization vol. 44 1192–1214 (2005) – 10.1137/s0363012903425568
- Cussler, (2009)
- De Groot, (1962)
- (2009)
- Eberard, D., Maschke, B. M. & van der Schaft, A. J. An extension of Hamiltonian systems to the thermodynamic phase space: Towards a geometry of nonreversible processes. Reports on Mathematical Physics vol. 60 175–198 (2007) – 10.1016/s0034-4877(07)00024-9
- Favache, A. & Dochain, D. Power-shaping control of reaction systems: The CSTR case. Automatica vol. 46 1877–1883 (2010) – 10.1016/j.automatica.2010.07.011
- Favache, A., Dochain, D. & Maschke, B. An entropy-based formulation of irreversible processes based on contact structures. Chemical Engineering Science vol. 65 5204–5216 (2010) – 10.1016/j.ces.2010.06.019
- Favache, A., Dochain, D. & Winkin, J. J. Power-shaping control: Writing the system dynamics into the Brayton–Moser form. Systems & Control Letters vol. 60 618–624 (2011) – 10.1016/j.sysconle.2011.04.021
- Gay-Balmaz, F. & Yoshimura, H. A Variational Formulation of Nonequilibrium Thermodynamics for Discrete Open Systems with Mass and Heat Transfer. Entropy vol. 20 163 (2018) – 10.3390/e20030163
- Godasi, S., Karakas, A. & Palazoglu, A. Control of nonlinear distributed parameter processes using symmetry groups and invariance conditions. Computers & Chemical Engineering vol. 26 1023–1036 (2002) – 10.1016/s0098-1354(02)00024-8
- Grmela, M. & Öttinger, H. C. Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Physical Review E vol. 56 6620–6632 (1997) – 10.1103/physreve.56.6620
- Hoang, H., Couenne, F., Jallut, C. & Le Gorrec, Y. The port Hamiltonian approach to modeling and control of Continuous Stirred Tank Reactors. Journal of Process Control vol. 21 1449–1458 (2011) – 10.1016/j.jprocont.2011.06.014
- Hoang, H., Couenne, F., Jallut, C. & Le Gorrec, Y. Lyapunov-based control of non isothermal continuous stirred tank reactors using irreversible thermodynamics. Journal of Process Control vol. 22 412–422 (2012) – 10.1016/j.jprocont.2011.12.007
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1
- Kjelstrup, (2017)
- Kondepudi, (1998)
- Gorrec, Y., Maschke, B., Villegas, J. A. & Zwart, H. Dissipative boundary control systems with application to distributed parameters reactors. 2006 IEEE International Conference on Control Applications 668–673 (2006) doi:10.1109/cca.2006.285949 – 10.1109/cca.2006.285949
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Macchelli, A., Le Gorrec, Y. & Ramirez, H. Exponential Stabilization of Port-Hamiltonian Boundary Control Systems via Energy Shaping. IEEE Transactions on Automatic Control vol. 65 4440–4447 (2020) – 10.1109/tac.2020.3004798
- Macchelli, A., Le Gorrec, Y., Ramirez, H. & Zwart, H. On the Synthesis of Boundary Control Laws for Distributed Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 62 1700–1713 (2017) – 10.1109/tac.2016.2595263
- Marsden, (1992)
- Maschke, B. & van der Schaft, A. 4 Compositional Modelling of Distributed-Parameter Systems. Lecture Notes in Control and Information Sciences 115–154 (2005) doi:10.1007/11334774_4 – 10.1007/11334774_4
- Merker, J. & Krüger, M. On a variational principle in thermodynamics. Continuum Mechanics and Thermodynamics vol. 25 779–793 (2012) – 10.1007/s00161-012-0277-2
- Mrugala, R., Nulton, J. D., Christian Schön, J. & Salamon, P. Contact structure in thermodynamic theory. Reports on Mathematical Physics vol. 29 109–121 (1991) – 10.1016/0034-4877(91)90017-h
- Muschik, W., Gümbel, S., Kröger, M. & Öttinger, H. C. A simple example for comparing GENERIC with rational non-equilibrium thermodynamics. Physica A: Statistical Mechanics and its Applications vol. 285 448–466 (2000) – 10.1016/s0378-4371(00)00252-1
- Nijmeijer, (1990)
- Olver, (1993)
- Ortega, R., Loría, A., Nicklasson, P. J. & Sira-Ramírez, H. Passivity-Based Control of Euler-Lagrange Systems. Communications and Control Engineering (Springer London, 1998). doi:10.1007/978-1-4471-3603-3 – 10.1007/978-1-4471-3603-3
- Öttinger, H. C. & Grmela, M. Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism. Physical Review E vol. 56 6633–6655 (1997) – 10.1103/physreve.56.6633
- Ramirez, H. & Gorrec, Y. L. An irreversible port-Hamiltonian formulation of distributed diffusion processes. IFAC-PapersOnLine vol. 49 46–51 (2016) – 10.1016/j.ifacol.2016.10.752
- Ramirez, H., Le Gorrec, Y., Macchelli, A. & Zwart, H. Exponential Stabilization of Boundary Controlled Port-Hamiltonian Systems With Dynamic Feedback. IEEE Transactions on Automatic Control vol. 59 2849–2855 (2014) – 10.1109/tac.2014.2315754
- Ramírez, H., Le Gorrec, Y., Maschke, B. & Couenne, F. On the passivity based control of irreversible processes: A port-Hamiltonian approach. Automatica vol. 64 105–111 (2016) – 10.1016/j.automatica.2015.07.002
- Ramirez, H., Maschke, B. & Sbarbaro, D. Feedback equivalence of input–output contact systems. Systems & Control Letters vol. 62 475–481 (2013) – 10.1016/j.sysconle.2013.02.008
- Ramirez, H., Maschke, B. & Sbarbaro, D. Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR. Chemical Engineering Science vol. 89 223–234 (2013) – 10.1016/j.ces.2012.12.002
- Ramirez, H., Maschke, B. & Sbarbaro, D. Modelling and control of multi-energy systems: An irreversible port-Hamiltonian approach. European Journal of Control vol. 19 513–520 (2013) – 10.1016/j.ejcon.2013.09.009
- Ramirez, H., Maschke, B. & Sbarbaro, D. Partial Stabilization of Input-Output Contact Systems on a Legendre Submanifold. IEEE Transactions on Automatic Control vol. 62 1431–1437 (2017) – 10.1109/tac.2016.2572403
- Ramírez, H., Sbarbaro, D. & Ortega, R. On the control of non-linear processes: An IDA–PBC approach. Journal of Process Control vol. 19 405–414 (2009) – 10.1016/j.jprocont.2008.06.018
- Ramirez, H., Zwart, H. & Le Gorrec, Y. Stabilization of infinite dimensional port-Hamiltonian systems by nonlinear dynamic boundary control. Automatica vol. 85 61–69 (2017) – 10.1016/j.automatica.2017.07.045
- Sandler, (2006)
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- van der Schaft, The Hamiltonian formulation of energy conserving physical systems with external ports. Archiv für Elektronik und Übertragungstechnik (1995)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Van der Schaft, A. & Maschke, B. Geometry of Thermodynamic Processes. Entropy vol. 20 925 (2018) – 10.3390/e20120925
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- Schaum, A., Meurer, T. & Moreno, J. A. Dissipative observers for coupled diffusion–convection–reaction systems. Automatica vol. 94 307–314 (2018) – 10.1016/j.automatica.2018.04.041
- Smale, On the mathematical foundations of electrical circuit theory. J. Diff. Geometry (1972)
- Whitman, J. R., Aranovich, G. L. & Donohue, M. D. Thermodynamic driving force for diffusion: Comparison between theory and simulation. The Journal of Chemical Physics vol. 134 (2011) – 10.1063/1.3558782
- Willems, J. C. Dissipative dynamical systems part I: General theory. Archive for Rational Mechanics and Analysis vol. 45 321–351 (1972) – 10.1007/bf00276493