Linear Boundary Port Hamiltonian Systems defined on Lagrangian submanifolds
Authors
Bernhard Maschke, Arjan van der Schaft
Abstract
Recently Port Hamiltonian systems have been extended to encompass an implicit definition of the energy function of the system, by defining it in terms of a Lagrangian submanifold. In this paper, we extend the definition of Port Hamiltonian systems defined with respect to Lagrangian submanifold to a class of infinite-dimensional systems where the Lagrangian submanifold is defined by first-order differential operators. We show that this adds some port boundary variables and derive the energy balance equation. This construction is illustrated on the model of a flexible nanorod made of composite material.
Keywords
Port Hamiltonian systems; Dirac structures; Lagrangian subspaces
Citation
- Journal: IFAC-PapersOnLine
- Year: 2020
- Volume: 53
- Issue: 2
- Pages: 7734–7739
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2020.12.1526
- Note: 21st IFAC World Congress- Berlin, Germany, 11–17 July 2020
BibTeX
@article{Maschke_2020,
title={{Linear Boundary Port Hamiltonian Systems defined on Lagrangian submanifolds}},
volume={53},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2020.12.1526},
number={2},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Maschke, Bernhard and Schaft, Arjan van der},
year={2020},
pages={7734--7739}
}
References
- Abraham, (1987)
- Baaiu, A. et al. Port-based modelling of mass transport phenomena. Mathematical and Computer Modelling of Dynamical Systems vol. 15 233–254 (2009) – 10.1080/13873950902808578
- Beattie, C., Mehrmann, V., Xu, H. & Zwart, H. Linear port-Hamiltonian descriptor systems. Mathematics of Control, Signals, and Systems vol. 30 (2018) – 10.1007/s00498-018-0223-3
- Eringen, A. C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. Journal of Applied Physics vol. 54 4703–4710 (1983) – 10.1063/1.332803
- Dorfman, (1993)
- Duindam, (2009)
- Eberard, D., Maschke, B. M. & van der Schaft, A. J. An extension of Hamiltonian systems to the thermodynamic phase space: Towards a geometry of nonreversible processes. Reports on Mathematical Physics vol. 60 175–198 (2007) – 10.1016/s0034-4877(07)00024-9
- Favache, A., Dochain, D. & Maschke, B. An entropy-based formulation of irreversible processes based on contact structures. Chemical Engineering Science vol. 65 5204–5216 (2010) – 10.1016/j.ces.2010.06.019
- Favache, A., Dos Santos Martins, V. S., Dochain, D. & Maschke, B. Some Properties of Conservative Port Contact Systems. IEEE Transactions on Automatic Control vol. 54 2341–2351 (2009) – 10.1109/tac.2009.2028973
- Hamroun, Port-based modelling for open channel irrigation systems. Transactions on Fluid Mechanics (2006)
- Heidari, Port-Hamiltonian modelling of nonlocal longitudinal vibrations in a viscoelastic nanorod. Mathematical and Computer Modelling of Dynamical Systems (2019)
- Jacob, (2012)
- Karličić, D., Cajić, M., Murmu, T. & Adhikari, S. Nonlocal longitudinal vibration of viscoelastic coupled double-nanorod systems. European Journal of Mechanics - A/Solids vol. 49 183–196 (2015) – 10.1016/j.euromechsol.2014.07.005
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Macchelli, (2009)
- Maschke, Advanced Topics in Control Systems Theory. (2005)
- Ramirez, H., Maschke, B. & Sbarbaro, D. Feedback equivalence of input–output contact systems. Systems & Control Letters vol. 62 475–481 (2013) – 10.1016/j.sysconle.2013.02.008
- Ramirez, H., Maschke, B. & Sbarbaro, D. Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR. Chemical Engineering Science vol. 89 223–234 (2013) – 10.1016/j.ces.2012.12.002
- van der Schaft, A. & Maschke, B. Generalized port-Hamiltonian DAE systems. Systems & Control Letters vol. 121 31–37 (2018) – 10.1016/j.sysconle.2018.09.008
- Van der Schaft, A. & Maschke, B. Geometry of Thermodynamic Processes. Entropy vol. 20 925 (2018) – 10.3390/e20120925
- van der Schaft, A. & Maschke, B. Homogeneous Hamiltonian Control Systems Part I: Geometric Formulation. IFAC-PapersOnLine vol. 51 1–6 (2018) – 10.1016/j.ifacol.2018.06.001
- van der Schaft, A. & Maschke, B. Dirac and Lagrange Algebraic Constraints in Nonlinear Port-Hamiltonian Systems. Vietnam Journal of Mathematics vol. 48 929–939 (2020) – 10.1007/s10013-020-00419-x
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3