Explicit structure-preserving discretization of port-Hamiltonian systems with mixed boundary control
Authors
Andrea Brugnoli, Ghislain Haine, Denis Matignon
Abstract
In this contribution, port-Hamiltonian systems with non-homogeneous mixed boundary conditions are discretized in a structure-preserving fashion by means of the Partitioned FEM. This means that the power balance and the port-Hamiltonian structure of the continuous equations is preserved at the discrete level. The general construction relies on a weak imposition of the boundary conditions by means of the Hellinger-Reissner variational principle, as recently proposed in [Thoma et al., 2021]. The case of linear hyperbolic wave-like systems, including the elastodynamic problem and the Maxwell equations in 3D, is then illustrated in detail. A numerical example is worked out on the case of the wave equation.
Keywords
Port-Hamiltonian systems (pHs); Partitioned Finite Element Method (PFEM); Mixed Boundary Control
Citation
- Journal: IFAC-PapersOnLine
- Year: 2022
- Volume: 55
- Issue: 30
- Pages: 418–423
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2022.11.089
- Note: 25th International Symposium on Mathematical Theory of Networks and Systems MTNS 2022- Bayreuth, Germany, September 12-16, 2022
BibTeX
@article{Brugnoli_2022,
title={{Explicit structure-preserving discretization of port-Hamiltonian systems with mixed boundary control}},
volume={55},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2022.11.089},
number={30},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Brugnoli, Andrea and Haine, Ghislain and Matignon, Denis},
year={2022},
pages={418--423}
}
References
- Arnold, D. N. Mixed finite element methods for elliptic problems. Computer Methods in Applied Mechanics and Engineering vol. 82 281–300 (1990) – 10.1016/0045-7825(90)90168-l
- Arnold, D. N., Falk, R. S. & Winther, R. Finite element exterior calculus, homological techniques, and applications. Acta Numerica vol. 15 1–155 (2006) – 10.1017/s0962492906210018
- Beattie, C., Mehrmann, V., Xu, H. & Zwart, H. Linear port-Hamiltonian descriptor systems. Mathematics of Control, Signals, and Systems vol. 30 (2018) – 10.1007/s00498-018-0223-3
- Benner, (2015)
- Bof, (2013)
- Brenner, (2008)
- Brugnoli, A., Alazard, D., Pommier-Budinger, V. & Matignon, D. A Port-Hamiltonian formulation of linear thermoelasticity and its mixed finite element discretization. Journal of Thermal Stresses vol. 44 643–661 (2021) – 10.1080/01495739.2021.1917322
- Brugnoli, A., Cardoso-Ribeiro, F. L., Haine, G. & Kotyczka, P. Partitioned finite element method for structured discretization with mixed boundary conditions. IFAC-PapersOnLine vol. 53 7557–7562 (2020) – 10.1016/j.ifacol.2020.12.1351
- Cardoso-Ribeiro, F. L., Matignon, D. & Lefèvre, L. A partitioned finite element method for power-preserving discretization of open systems of conservation laws. IMA Journal of Mathematical Control and Information vol. 38 493–533 (2020) – 10.1093/imamci/dnaa038
- Haine, G. & Matignon, D. Incompressible Navier-Stokes Equation as port-Hamiltonian systems: velocity formulation versus vorticity formulation. IFAC-PapersOnLine vol. 54 161–166 (2021) – 10.1016/j.ifacol.2021.11.072
- Haine, Structure-perserving discretization of Maxwell’s equations as a port-Hamiltonian system. (2022)
- Hernandez, V., Roman, J. E. & Vidal, V. SLEPc. ACM Transactions on Mathematical Software vol. 31 351–362 (2005) – 10.1145/1089014.1089019
- Lu, K., Augarde, C. E., Coombs, W. M. & Hu, Z. Weak impositions of Dirichlet boundary conditions in solid mechanics: A critique of current approaches and extension to partially prescribed boundaries. Computer Methods in Applied Mechanics and Engineering vol. 348 632–659 (2019) – 10.1016/j.cma.2019.01.035
- Nguyen, P. A. & Raymond, J.-P. Boundary Stabilization of the Navier–Stokes Equations in the Case of Mixed Boundary Conditions. SIAM Journal on Control and Optimization vol. 53 3006–3039 (2015) – 10.1137/13091364x
- Rashad, R., Califano, F., van der Schaft, A. J. & Stramigioli, S. Twenty years of distributed port-Hamiltonian systems: a literature review. IMA Journal of Mathematical Control and Information vol. 37 1400–1422 (2020) – 10.1093/imamci/dnaa018
- Rathgeber, F. et al. Firedrake. ACM Transactions on Mathematical Software vol. 43 1–27 (2016) – 10.1145/2998441
- Serhani, A., Haine, G. & Matignon, D. Anisotropic heterogeneous n-D heat equation with boundary control and observation: II. Structure-preserving discretization. IFAC-PapersOnLine vol. 52 57–62 (2019) – 10.1016/j.ifacol.2019.07.010
- Thoma, Explicit port-Hamiltonian FEM-models for linear mechanical systems with non-uniform boundary conditions. ArXiv (2021)
- Tucsnak, (2009)
- van der Schaft, Port-Hamiltonian differential-algebraic systems. (2013)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3