Linear port-Hamiltonian DAE systems revisited
Authors
Arjan van der Schaft, Volker Mehrmann
Abstract
Port-Hamiltonian systems theory provides a systematic methodology for the modeling, simulation and control of multi-physics systems. The incorporation of algebraic constraints has led to a multitude of definitions of port-Hamiltonian differential–algebraic equations (DAE) systems in the literature. This paper presents extensions of results obtained in Gernandt et al. (2021); Mehrmann and van der Schaft (2023) in the context of maximally monotone structures, and shows that any such structure can be written as the composition of a Dirac and a resistive structure. This yields an alternative, but equivalent, definition of linear port-Hamiltonian DAE systems with certain advantages. In particular, it leads to simpler coordinate representations, as well as to explicit expressions for the associated transfer functions.
Keywords
Port-Hamiltonian system; Differential–algebraic equation; Lagrange structure; Dirac structure; Maximally monotone structure
Citation
- Journal: Systems & Control Letters
- Year: 2023
- Volume: 177
- Issue:
- Pages: 105564
- Publisher: Elsevier BV
- DOI: 10.1016/j.sysconle.2023.105564
BibTeX
@article{van_der_Schaft_2023,
title={{Linear port-Hamiltonian DAE systems revisited}},
volume={177},
ISSN={0167-6911},
DOI={10.1016/j.sysconle.2023.105564},
journal={Systems & Control Letters},
publisher={Elsevier BV},
author={van der Schaft, Arjan and Mehrmann, Volker},
year={2023},
pages={105564}
}
References
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Mehrmann, V. & Unger, B. Control of port-Hamiltonian differential-algebraic systems and applications. Acta Numerica vol. 32 395–515 (2023) – 10.1017/s0962492922000083
- van der Schaft, The Hamiltonian formulation of energy conserving physical systems with external ports. Arch. Elektron. Übertragungstech. (1995)
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM Journal on Control and Optimization vol. 37 54–91 (1998) – 10.1137/s0363012996312039
- van der Schaft, Port-Hamiltonian differential–algebraic systems. (2013)
- Beattie, Port-Hamiltonian descriptor systems. Math. Control Signals Systems (2018)
- Mehl, C., Mehrmann, V. & Wojtylak, M. Linear Algebra Properties of Dissipative Hamiltonian Descriptor Systems. SIAM Journal on Matrix Analysis and Applications vol. 39 1489–1519 (2018) – 10.1137/18m1164275
- van der Schaft, A. & Maschke, B. Generalized port-Hamiltonian DAE systems. Systems & Control Letters vol. 121 31–37 (2018) – 10.1016/j.sysconle.2018.09.008
- Gernandt, H., Haller, F. E. & Reis, T. A Linear Relation Approach to Port-Hamiltonian Differential-Algebraic Equations. SIAM Journal on Matrix Analysis and Applications vol. 42 1011–1044 (2021) – 10.1137/20m1371166
- Mehrmann, V. & van der Schaft, A. Differential–algebraic systems with dissipative Hamiltonian structure. Mathematics of Control, Signals, and Systems vol. 35 541–584 (2023) – 10.1007/s00498-023-00349-2
- Rockafellar, (1998)
- Camlibel, Incrementally port-Hamiltonian systems. (2013)
- Camlibel, M. K. & van der Schaft, A. J. Port-Hamiltonian Systems Theory and Monotonicity. SIAM Journal on Control and Optimization vol. 61 2193–2221 (2023) – 10.1137/22m1503749