Implicit port-Hamiltonian systems: structure-preserving discretization for the nonlocal vibrations in a viscoelastic nanorod, and for a seepage model
Authors
Antoine Bendimerad-Hohl, Ghislain Haine, Laurent Lefèvre, Denis Matignon
Abstract
A structure-preserving partitioned finite element method (PFEM), for the semi-discretization of infinite-dimensional explicit port-Hamiltonian systems (pHs), is extended to those pHs of implicit type, leading to port-Hamiltonian differential Algebraic Equations (pH-DAE). Two examples are dealt with: the nonlocal vibrations in a viscoelastic nanorod in 1D, and the dynamics of a fluid filtration model, the Dzektser seepage model in 2D, for which illustrative numerical simulations are provided.
Keywords
port-Hamiltonian systems; Structure-Preserving Discretization; Partitioned Finite Element Method; Implicit port-Hamiltonian systems; Nonlocal dynamics
Citation
- Journal: IFAC-PapersOnLine
- Year: 2023
- Volume: 56
- Issue: 2
- Pages: 6789–6795
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2023.10.387
- Note: 22nd IFAC World Congress- Yokohama, Japan, July 9-14, 2023
BibTeX
@article{Bendimerad_Hohl_2023,
title={{Implicit port-Hamiltonian systems: structure-preserving discretization for the nonlocal vibrations in a viscoelastic nanorod, and for a seepage model}},
volume={56},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2023.10.387},
number={2},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Bendimerad-Hohl, Antoine and Haine, Ghislain and Lefèvre, Laurent and Matignon, Denis},
year={2023},
pages={6789--6795}
}
References
- Altmann, R. & Schulze, P. A port-Hamiltonian formulation of the Navier–Stokes equations for reactive flows. Systems & Control Letters vol. 100 51–55 (2017) – 10.1016/j.sysconle.2016.12.005
- Beattie, C., Mehrmann, V., Xu, H. & Zwart, H. Linear port-Hamiltonian descriptor systems. Mathematics of Control, Signals, and Systems vol. 30 (2018) – 10.1007/s00498-018-0223-3
- Bendimerad-Hohl, A., Haine, G., Matignon, D. & Maschke, B. Structure-preserving discretization of a coupled Allen-Cahn and heat equation system. IFAC-PapersOnLine vol. 55 99–104 (2022) – 10.1016/j.ifacol.2022.08.037
- Brugnoli, A., Haine, G., Serhani, A. & Vasseur, X. Numerical Approximation of Port-Hamiltonian Systems for Hyperbolic or Parabolic PDEs with Boundary Control. Journal of Applied Mathematics and Physics vol. 09 1278–1321 (2021) – 10.4236/jamp.2021.96088
- Brugnoli, A., Alazard, D., Pommier-Budinger, V. & Matignon, D. Port-Hamiltonian formulation and symplectic discretization of plate models Part II: Kirchhoff model for thin plates. Applied Mathematical Modelling vol. 75 961–981 (2019) – 10.1016/j.apm.2019.04.036
- Cardoso-Ribeiro, Port-Hamiltonian modeling, discretization and feedback control of a circular water tank. (2019)
- Cardoso-Ribeiro, F. L., Matignon, D. & Lefèvre, L. A partitioned finite element method for power-preserving discretization of open systems of conservation laws. IMA Journal of Mathematical Control and Information vol. 38 493–533 (2020) – 10.1093/imamci/dnaa038
- Duindam, (2009)
- Dzektser, Generalization of the equation of motion of ground waters with free surface. Dokl. Akad. Nauk SSSR (1972)
- Eringen, A. C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. Journal of Applied Physics vol. 54 4703–4710 (1983) – 10.1063/1.332803
- Fedorov, V. E. & Shklyar, B. Exact null controllability of degenerate evolution equations with scalar control. Sbornik: Mathematics vol. 203 1817–1836 (2012) – 10.1070/sm2012v203n12abeh004289
- Ge, Z., Ge, X. & Zhang, J. Approximate Controllability and Approximate Observability of Singular Distributed Parameter Systems. IEEE Transactions on Automatic Control vol. 65 2294–2299 (2020) – 10.1109/tac.2019.2920215
- Haine, G. & Matignon, D. Incompressible Navier-Stokes Equation as port-Hamiltonian systems: velocity formulation versus vorticity formulation. IFAC-PapersOnLine vol. 54 161–166 (2021) – 10.1016/j.ifacol.2021.11.072
- Haine, Numerical analysis of a structure-preserving space-discretization for an anisotropic and heterogeneous boundary controlled N-dimensional wave equation as a port-Hamiltonian system. Int. J. Numer. Anal. Mod. (2023)
- Heidari, H. & Zwart, H. Port-Hamiltonian modelling of nonlocal longitudinal vibrations in a viscoelastic nanorod. Mathematical and Computer Modelling of Dynamical Systems vol. 25 447–462 (2019) – 10.1080/13873954.2019.1659374
- Heidari, H. & Zwart, H. Nonlocal longitudinal vibration in a nanorod, a system theoretic analysis. Mathematical Modelling of Natural Phenomena vol. 17 24 (2022) – 10.1051/mmnp/2022028
- Jacob, B. & Morris, K. On Solvability of Dissipative Partial Differential-Algebraic Equations. IEEE Control Systems Letters vol. 6 3188–3193 (2022) – 10.1109/lcsys.2022.3183479
- Jacob, (2012)
- Kotyczka, P., Maschke, B. & Lefèvre, L. Weak form of Stokes–Dirac structures and geometric discretization of port-Hamiltonian systems. Journal of Computational Physics vol. 361 442–476 (2018) – 10.1016/j.jcp.2018.02.006
- Kurula, Linear wave systems on n-D spatial domains. International Journal of Control (2015)
- Maschke, B. & van der Schaft, A. J. On alternative Poisson brackets for fluid dynamical systems and their extension to Stokes-Dirac structures. IFAC Proceedings Volumes vol. 46 109–114 (2013) – 10.3182/20130925-3-fr-4043.00083
- Matignon, D. & Hélie, T. A class of damping models preserving eigenspaces for linear conservative port-Hamiltonian systems. European Journal of Control vol. 19 486–494 (2013) – 10.1016/j.ejcon.2013.10.003
- Mehrmann, Structure-preserving discretization for port-Hamiltonian descriptor systems. (2019)
- Mehrmann, V. & Unger, B. Control of port-Hamiltonian differential-algebraic systems and applications. Acta Numerica vol. 32 395–515 (2023) – 10.1017/s0962492922000083
- Mehrmann, V. & van der Schaft, A. Differential–algebraic systems with dissipative Hamiltonian structure. Mathematics of Control, Signals, and Systems vol. 35 541–584 (2023) – 10.1007/s00498-023-00349-2
- Perevozhikova, K. V. & Manakova, N. A. Numerical Simulation of Start Control and Final Observation in Fluid Filtration Model. Journal of Computational and Engineering Mathematics vol. 8 29–45 (2021) – 10.14529/jcem210103
- Rashad, R., Califano, F., van der Schaft, A. J. & Stramigioli, S. Twenty years of distributed port-Hamiltonian systems: a literature review. IMA Journal of Mathematical Control and Information vol. 37 1400–1422 (2020) – 10.1093/imamci/dnaa018
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- van der Schaft, A. & Maschke, B. Dirac and Lagrange Algebraic Constraints in Nonlinear Port-Hamiltonian Systems. Vietnam Journal of Mathematics vol. 48 929–939 (2020) – 10.1007/s10013-020-00419-x
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- van der Schaft, A. & Maschke, B. Generalized port-Hamiltonian DAE systems. Systems & Control Letters vol. 121 31–37 (2018) – 10.1016/j.sysconle.2018.09.008
- Vu, N. M. T., Lefèvre, L. & Maschke, B. A structured control model for the thermo-magneto-hydrodynamics of plasmas in tokamaks. Mathematical and Computer Modelling of Dynamical Systems vol. 22 181–206 (2016) – 10.1080/13873954.2016.1154874
- Yaghi, M., Couenne, F., Galfré, A., Lefèvre, L. & Maschke, B. Port Hamiltonian formulation of the solidification process for a pure substance: A phase field approach*. IFAC-PapersOnLine vol. 55 93–98 (2022) – 10.1016/j.ifacol.2022.08.036