Authors

Antoine Bendimerad-Hohl, Ghislain Haine, Laurent Lefèvre, Denis Matignon

Abstract

A structure-preserving partitioned finite element method (PFEM), for the semi-discretization of infinite-dimensional explicit port-Hamiltonian systems (pHs), is extended to those pHs of implicit type, leading to port-Hamiltonian differential Algebraic Equations (pH-DAE). Two examples are dealt with: the nonlocal vibrations in a viscoelastic nanorod in 1D, and the dynamics of a fluid filtration model, the Dzektser seepage model in 2D, for which illustrative numerical simulations are provided.

Keywords

port-Hamiltonian systems; Structure-Preserving Discretization; Partitioned Finite Element Method; Implicit port-Hamiltonian systems; Nonlocal dynamics

Citation

  • Journal: IFAC-PapersOnLine
  • Year: 2023
  • Volume: 56
  • Issue: 2
  • Pages: 6789–6795
  • Publisher: Elsevier BV
  • DOI: 10.1016/j.ifacol.2023.10.387
  • Note: 22nd IFAC World Congress- Yokohama, Japan, July 9-14, 2023

BibTeX

@article{Bendimerad_Hohl_2023,
  title={{Implicit port-Hamiltonian systems: structure-preserving discretization for the nonlocal vibrations in a viscoelastic nanorod, and for a seepage model}},
  volume={56},
  ISSN={2405-8963},
  DOI={10.1016/j.ifacol.2023.10.387},
  number={2},
  journal={IFAC-PapersOnLine},
  publisher={Elsevier BV},
  author={Bendimerad-Hohl, Antoine and Haine, Ghislain and Lefèvre, Laurent and Matignon, Denis},
  year={2023},
  pages={6789--6795}
}

Download the bib file

References