Energy-based fluid–structure model of the vocal folds
Authors
Luis A Mora, Hector Ramirez, Juan I Yuz, Yann Le Gorec, Matías Zañartu
Abstract
Lumped elements models of vocal folds are relevant research tools that can enhance the understanding of the pathophysiology of many voice disorders. In this paper, we use the port-Hamiltonian framework to obtain an energy-based model for the fluid–structure interactions between the vocal folds and the airflow in the glottis. The vocal fold behavior is represented by a three-mass model and the airflow is described as a fluid with irrotational flow. The proposed approach allows to go beyond the usual quasi-steady one-dimensional flow assumption in lumped mass models. The simulation results show that the proposed energy-based model successfully reproduces the oscillations of the vocal folds, including the collision phenomena, and it is useful to analyze the energy exchange between the airflow and the vocal folds.
Citation
- Journal: IMA Journal of Mathematical Control and Information
- Year: 2021
- Volume: 38
- Issue: 2
- Pages: 466–492
- Publisher: Oxford University Press (OUP)
- DOI: 10.1093/imamci/dnaa031
BibTeX
@article{Mora_2020,
title={{Energy-based fluid–structure model of the vocal folds}},
volume={38},
ISSN={1471-6887},
DOI={10.1093/imamci/dnaa031},
number={2},
journal={IMA Journal of Mathematical Control and Information},
publisher={Oxford University Press (OUP)},
author={Mora, Luis A and Ramirez, Hector and Yuz, Juan I and Le Gorec, Yann and Zañartu, Matías},
year={2020},
pages={466--492}
}
References
- Alipour, F. & Scherer, R. C. Flow separation in a computational oscillating vocal fold model. The Journal of the Acoustical Society of America vol. 116 1710–1719 (2004) – 10.1121/1.1779274
- Bird, Introductory Transport Phenomena (2014)
- Cardoso-Ribeiro, Modeling by interconnection and control by damping injection of a fluid-structure system with non-collocated actuators and sensors. Proceedings of ISMA 2016—International Conference on Noise and Vibration Engineering and USD2016—International Conference on Uncertainty in Structural Dynamics, Leuven, Belgium (2016)
- Cardoso-Ribeiro, F. L., Matignon, D. & Pommier-Budinger, V. A port-Hamiltonian model of liquid sloshing in moving containers and application to a fluid-structure system. Journal of Fluids and Structures vol. 69 402–427 (2017) – 10.1016/j.jfluidstructs.2016.12.007
- Encina, Vocal fold modeling through the port-Hamiltonian systems approach. IEEE Multiconference on Systems and Control-MSC 2015, Sydney, Australia (2015)
- Erath, B. D. et al. A review of lumped-element models of voiced speech. Speech Communication vol. 55 667–690 (2013) – 10.1016/j.specom.2013.02.002
- Espinoza, V. M., Zañartu, M., Van Stan, J. H., Mehta, D. D. & Hillman, R. E. Glottal Aerodynamic Measures in Women With Phonotraumatic and Nonphonotraumatic Vocal Hyperfunction. Journal of Speech, Language, and Hearing Research vol. 60 2159–2169 (2017) – 10.1044/2017_jslhr-s-16-0337
- Galindo, G. E. et al. Modeling the Pathophysiology of Phonotraumatic Vocal Hyperfunction With a Triangular Glottal Model of the Vocal Folds. Journal of Speech, Language, and Hearing Research vol. 60 2452–2471 (2017) – 10.1044/2017_jslhr-s-16-0412
- Haddad, N. K., Chemori, A. & Belghith, S. Robustness enhancement of IDA-PBC controller in stabilising the inertia wheel inverted pendulum: theory and real-time experiments. International Journal of Control vol. 91 2657–2672 (2017) – 10.1080/00207179.2017.1331378
- Hélie, T. & Silva, F. Self-oscillations of a Vocal Apparatus: A Port-Hamiltonian Formulation. Lecture Notes in Computer Science 375–383 (2017) doi:10.1007/978-3-319-68445-1_44 – 10.1007/978-3-319-68445-1_44
- Ishizaka, K. & Flanagan, J. L. Synthesis of Voiced Sounds From a Two-Mass Model of the Vocal Cords. Bell System Technical Journal vol. 51 1233–1268 (1972) – 10.1002/j.1538-7305.1972.tb02651.x
- Jiang, W., Zheng, X. & Xue, Q. Computational Modeling of Fluid–Structure–Acoustics Interaction during Voice Production. Frontiers in Bioengineering and Biotechnology vol. 5 (2017) – 10.3389/fbioe.2017.00007
- Kotyczka, Discretized models for networks of distributed parameter port-Hamiltonian systems. Proceedings of the 8th International Workshop on Multidimensional Systems (nDS13) (2013)
- Landau, Course of Theorietcal Physics. Fluid Mechanics (1987)
- Lucero, J. C. & Schoentgen, J. Smoothness of an equation for the glottal flow rate versus the glottal area. The Journal of the Acoustical Society of America vol. 137 2970–2973 (2015) – 10.1121/1.4919297
- Mackay, A. T. & Phillips, T. N. On the derivation of macroscopic models for compressible viscoelastic fluids using the generalized bracket framework. Journal of Non-Newtonian Fluid Mechanics vol. 266 59–71 (2019) – 10.1016/j.jnnfm.2019.02.006
- Matignon, D. & Hélie, T. A class of damping models preserving eigenspaces for linear conservative port-Hamiltonian systems. European Journal of Control vol. 19 486–494 (2013) – 10.1016/j.ejcon.2013.10.003
- Mittal, R., Erath, B. D. & Plesniak, M. W. Fluid Dynamics of Human Phonation and Speech. Annual Review of Fluid Mechanics vol. 45 437–467 (2013) – 10.1146/annurev-fluid-011212-140636
- Mora, L. A., Gorrec, Y. L., Matignon, D., Ramirez, H. & Yuz, J. I. About Dissipative and Pseudo Port-Hamiltonian Formulations of Irreversible Newtonian Compressible Flows. IFAC-PapersOnLine vol. 53 11521–11526 (2020) – 10.1016/j.ifacol.2020.12.604
- Mora, L. A., Yuz, J. I., Ramirez, H. & Gorrec, Y. L. A port-Hamiltonian Fluid-Structure Interaction Model for the Vocal folds . IFAC-PapersOnLine vol. 51 62–67 (2018) – 10.1016/j.ifacol.2018.06.016
- Mulley, R. Flow of Industrial Fluids. (2004) doi:10.1201/9781420038286 – 10.1201/9781420038286
- Nguyen, T. S., Hoang, N. H. & Azlan Hussain, M. Feedback passivation plus tracking-error-based multivariable control for a class of free-radical polymerisation reactors. International Journal of Control vol. 92 1970–1984 (2018) – 10.1080/00207179.2017.1423393
- Pyrkin, A robust adaptive flux observer for a class of electromechanical systems. Internat. J. Control (2018)
- Samlan, R. A., Story, B. H. & Bunton, K. Relation of Perceived Breathiness to Laryngeal Kinematics and Acoustic Measures Based on Computational Modeling. Journal of Speech, Language, and Hearing Research vol. 56 1209–1223 (2013) – 10.1044/1092-4388(2012/12-0194)
- Shurtz, T. E. & Thomson, S. L. Influence of numerical model decisions on the flow-induced vibration of a computational vocal fold model. Computers & Structures vol. 122 44–54 (2013) – 10.1016/j.compstruc.2012.10.015
- Steinecke, I. & Herzel, H. Bifurcations in an asymmetric vocal-fold model. The Journal of the Acoustical Society of America vol. 97 1874–1884 (1995) – 10.1121/1.412061
- Story, B. H. & Titze, I. R. Voice simulation with a body-cover model of the vocal folds. The Journal of the Acoustical Society of America vol. 97 1249–1260 (1995) – 10.1121/1.412234
- Sváček, P. & Horáček, J. Finite element approximation of flow induced vibrations of human vocal folds model: Effects of inflow boundary conditions and the length of subglottal and supraglottal channel on phonation onset. Applied Mathematics and Computation vol. 319 178–194 (2018) – 10.1016/j.amc.2017.02.026
- Tao, C., Jiang, J. J. & Zhang, Y. Simulation of vocal fold impact pressures with a self-oscillating finite-element model. The Journal of the Acoustical Society of America vol. 119 3987–3994 (2006) – 10.1121/1.2197798
- Thomson, S. L., Mongeau, L. & Frankel, S. H. Aerodynamic transfer of energy to the vocal folds. The Journal of the Acoustical Society of America vol. 118 1689–1700 (2005) – 10.1121/1.2000787
- Titze, I. R. & Hunter, E. J. Comparison of Vocal Vibration-Dose Measures for Potential-Damage Risk Criteria. Journal of Speech, Language, and Hearing Research vol. 58 1425–1439 (2015) – 10.1044/2015_jslhr-s-13-0128
- Trenchant, V., Fares, Y., Ramirez, H. & Le Gorrec, Y. A port-Hamiltonian formulation of a 2D boundary controlled acoustic system. IFAC-PapersOnLine vol. 48 235–240 (2015) – 10.1016/j.ifacol.2015.10.245
- Trenchant, V., Ramirez, H., Le Gorrec, Y. & Kotyczka, P. Finite differences on staggered grids preserving the port-Hamiltonian structure with application to an acoustic duct. Journal of Computational Physics vol. 373 673–697 (2018) – 10.1016/j.jcp.2018.06.051
- van der Schaft, A. L2-Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer International Publishing, 2017). doi:10.1007/978-3-319-49992-5 – 10.1007/978-3-319-49992-5
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. (2014) doi:10.1561/9781601987877 – 10.1561/9781601987877
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- van der Schaft, A. J., Rao, S. & Jayawardhana, B. A network dynamics approach to chemical reaction networks. International Journal of Control vol. 89 731–745 (2015) – 10.1080/00207179.2015.1095353
- Wetzel, Power balanced time-varying lumped parameter model of a vocal tract: modelling and simulation. Proceedings of the 26th International Congress on Sound and Vibration, ICSV 2019, Montréal, Canada (2019)
- Zañartu, M. et al. Modeling the effects of a posterior glottal opening on vocal fold dynamics with implications for vocal hyperfunction. The Journal of the Acoustical Society of America vol. 136 3262–3271 (2014) – 10.1121/1.4901714
- Zhang, A deep neural network based glottal flow model for predicting fluid-structure interactions during voice production. Appl. Sci. (2020)
- Zheng, X., Mittal, R., Xue, Q. & Bielamowicz, S. Direct-numerical simulation of the glottal jet and vocal-fold dynamics in a three-dimensional laryngeal model. The Journal of The Acoustical Society of America vol. 130 404–415 (2011) – 10.1121/1.3592216