Port-Hamiltonian fluid–structure interaction modelling and structure-preserving model order reduction of a classical guitar
Authors
Johannes Rettberg, Dominik Wittwar, Patrick Buchfink, Alexander Brauchler, Pascal Ziegler, Jörg Fehr, Bernard Haasdonk
Abstract
A fluid–structure interaction model in a port-Hamiltonian representation is derived for a classical guitar. After discretization, we combine the laws of continuum mechanics for solids and fluids within a unified port-Hamiltonian (pH) modelling approach by adapting the equations through an appropriate coordinate transformation on the second-order level. The high-dimensionality of the resulting system is reduced by model order reduction. The article focuses on pH-systems in different state transformations, a variety of basis generation techniques as well as structure-preserving model order reduction approaches that are independent from the projection basis. As main contribution, a thorough comparison of these method combinations is conducted. In contrast to typical frequency-based simulations in acoustics, transient time simulations of the system are presented. The approach is embedded into a straightforward workflow of sophisticated commercial software modelling and flexible in-house software for multi-physics coupling and model order reduction.
Citation
- Journal: Mathematical and Computer Modelling of Dynamical Systems
- Year: 2023
- Volume: 29
- Issue: 1
- Pages: 116–148
- Publisher: Informa UK Limited
- DOI: 10.1080/13873954.2023.2173238
BibTeX
@article{Rettberg_2023,
title={{Port-Hamiltonian fluid–structure interaction modelling and structure-preserving model order reduction of a classical guitar}},
volume={29},
ISSN={1744-5051},
DOI={10.1080/13873954.2023.2173238},
number={1},
journal={Mathematical and Computer Modelling of Dynamical Systems},
publisher={Informa UK Limited},
author={Rettberg, Johannes and Wittwar, Dominik and Buchfink, Patrick and Brauchler, Alexander and Ziegler, Pascal and Fehr, Jörg and Haasdonk, Bernard},
year={2023},
pages={116--148}
}
References
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Chaturantabut, S., Beattie, C. & Gugercin, S. Structure-Preserving Model Reduction for Nonlinear Port-Hamiltonian Systems. SIAM Journal on Scientific Computing vol. 38 B837–B865 (2016) – 10.1137/15m1055085
- Rashad, R., Califano, F., van der Schaft, A. J. & Stramigioli, S. Twenty years of distributed port-Hamiltonian systems: a literature review. IMA Journal of Mathematical Control and Information vol. 37 1400–1422 (2020) – 10.1093/imamci/dnaa018
- Fluid-Structure Interaction. Lecture Notes in Computational Science and Engineering (Springer Berlin Heidelberg, 2006). doi:10.1007/3-540-34596-5 – 10.1007/3-540-34596-5
- Richter, T. Fluid-Structure Interactions. Lecture Notes in Computational Science and Engineering (Springer International Publishing, 2017). doi:10.1007/978-3-319-63970-3 – 10.1007/978-3-319-63970-3
- Brauchler, A., Ziegler, P. & Eberhard, P. An entirely reverse-engineered finite element model of a classical guitar in comparison with experimental data. The Journal of the Acoustical Society of America vol. 149 4450–4462 (2021) – 10.1121/10.0005310
- Christensen O.. O. Christensen, Quantitative models for low frequency guitar function, Journal of Guitar Acoustics. 6 (1982), pp. 10–25. http://scholar.google.com/scholar_lookup?hl=en. (1982)
- Bécache, E., Derveaux, G. & Joly, P. An efficient numerical method for the resolution of the Kirchhoff‐Love dynamic plate equation. Numerical Methods for Partial Differential Equations vol. 21 323–348 (2004) – 10.1002/num.20041
- Brauchler, A., Ziegler, P. & Eberhard, P. Examination of polarization coupling in a plucked musical instrument string via experiments and simulations. Acta Acustica vol. 4 9 (2020) – 10.1051/aacus/2020008
- Ducceschi, M. & Bilbao, S. Linear stiff string vibrations in musical acoustics: Assessment and comparison of models. The Journal of the Acoustical Society of America vol. 140 2445–2454 (2016) – 10.1121/1.4962553
- Derveaux, G., Chaigne, A., Joly, P. & Bécache, E. Time-domain simulation of a guitar: Model and method. The Journal of the Acoustical Society of America vol. 114 3368–3383 (2003) – 10.1121/1.1629302
- Bécache, E., Chaigne, A., Derveaux, G. & Joly, P. Numerical simulation of a guitar. Computers & Structures vol. 83 107–126 (2005) – 10.1016/j.compstruc.2004.04.018
- Silva F.. F. Silva, T. Hélie, and V. Wetzel, Port-Hamiltonian Representation of Dynamical Systems. Application to Self-Sustained Oscillations in the Vocal Apparatus, in 7th Int. Conf. on Nonlinear Vibrations, Localization and Energy Transfer, P. du Lma, ed., Vol. 160, Jun, Marseille, France. 2019, Available at https://hal.archives-ouvertes.fr/hal-03020400. (2019)
- Falaize, A. & Hélie, T. Passive simulation of the nonlinear port-Hamiltonian modeling of a Rhodes Piano. Journal of Sound and Vibration vol. 390 289–309 (2017) – 10.1016/j.jsv.2016.11.008
- Tchonkova, M. & Sture, S. Classical and recent formulations for linear elasticity. Archives of Computational Methods in Engineering vol. 8 41–74 (2001) – 10.1007/bf02736684
- Blackstock D.. D. Blackstock, Fundamentals of Physical Acoustics, Wiley, New York, 2000. (2000)
- Zienkiewicz O.C.. O.C. Zienkiewicz, R.L. Taylor, and D.D. Fox, The Finite Element Method for Solid and Structural Mechanics, 7th ed., Butterworth-Heinemann, Oxford, 2013. (2013)
- Antoulas, A. C. Approximation of Large-Scale Dynamical Systems. (2005) doi:10.1137/1.9780898718713 – 10.1137/1.9780898718713
- Wolf, T., Lohmann, B., Eid, R. & Kotyczka, P. Passivity and Structure Preserving Order Reduction of Linear Port-Hamiltonian Systems Using Krylov Subspaces. European Journal of Control vol. 16 401–406 (2010) – 10.3166/ejc.16.401-406
- Egger, H., Habrich, O. & Shashkov, V. On the Energy Stable Approximation of Hamiltonian and Gradient Systems. Computational Methods in Applied Mathematics vol. 21 335–349 (2020) – 10.1515/cmam-2020-0025
- Koutsovasilis, P. & Beitelschmidt, M. Comparison of model reduction techniques for large mechanical systems. Multibody System Dynamics vol. 20 111–128 (2008) – 10.1007/s11044-008-9116-4
- Freund, R. W. Model reduction methods based on Krylov subspaces. Acta Numerica vol. 12 267–319 (2003) – 10.1017/s0962492902000120
- S. Volkwein Proper orthogonal decomposition: Theory and reduced-order modelling http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/POD-Book.pdf (2013).
- Peng, L. & Mohseni, K. Symplectic Model Reduction of Hamiltonian Systems. SIAM Journal on Scientific Computing vol. 38 A1–A27 (2016) – 10.1137/140978922
- Buchfink, P., Bhatt, A. & Haasdonk, B. Symplectic Model Order Reduction with Non-Orthonormal Bases. Mathematical and Computational Applications vol. 24 43 (2019) – 10.3390/mca24020043
- Beattie, C., Gugercin, S. & Mehrmann, V. Structure-Preserving Interpolatory Model Reduction for Port-Hamiltonian Differential-Algebraic Systems. Realization and Model Reduction of Dynamical Systems 235–254 (2022) doi:10.1007/978-3-030-95157-3_13 – 10.1007/978-3-030-95157-3_13
- J.S. Hesthaven C. Pagliantini and N. Ripamonti Structure-preserving model order reduction of Hamiltonian systems (2021). Available at https://arxiv.org/abs/2109.12367.
- Altmann, R., Mehrmann, V. & Unger, B. Port-Hamiltonian formulations of poroelastic network models. Mathematical and Computer Modelling of Dynamical Systems vol. 27 429–452 (2021) – 10.1080/13873954.2021.1975137
- Hesthaven, J. S. & Pagliantini, C. Structure-preserving reduced basis methods for Poisson systems. Mathematics of Computation vol. 90 1701–1740 (2021) – 10.1090/mcom/3618
- Zienkiewicz O.C.. O.C. Zienkiewicz, R.L. Taylor, and J.Z. Zhu, The Finite Element Method – Its Basis & Fundamentals, Butterworth-Heinemann, Oxford, 2005. (2005)
- Tkachuk, A. & Bischoff, M. Variational methods for selective mass scaling. Computational Mechanics vol. 52 563–570 (2013) – 10.1007/s00466-013-0832-0
- Brauchler, A., Hose, D., Ziegler, P., Hanss, M. & Eberhard, P. Distinguishing geometrically identical instruments: Possibilistic identification of material parameters in a parametrically model order reduced finite element model of a classical guitar. Journal of Sound and Vibration vol. 535 117071 (2022) – 10.1016/j.jsv.2022.117071
- Matignon, D. & Hélie, T. A class of damping models preserving eigenspaces for linear conservative port-Hamiltonian systems. European Journal of Control vol. 19 486–494 (2013) – 10.1016/j.ejcon.2013.10.003
- Lerch, R., Sessler, G. & Wolf, D. Technische Akustik. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-540-49833-9 – 10.1007/978-3-540-49833-9
- Howard C.. C. Howard and B. Cazzolato, Acoustic Analyses Using Matlab and Ansys, Boca Raton, FL: Taylor & Francis Group, 2017. (2017)
- van de Walle, A., Naets, F., Deckers, E. & Desmet, W. Stability‐preserving model order reduction for time‐domain simulation of vibro‐acoustic FE models. International Journal for Numerical Methods in Engineering vol. 109 889–912 (2016) – 10.1002/nme.5323
- DOI not foun – 10.1016/0022-460x(81)
- Abaqus. Abaqus, Abaqus Theory Manual, Providence, RI: Abaqus, Inc, 2016. (2016)
- Mehrmann, V. & Morandin, R. Structure-preserving discretization for port-Hamiltonian descriptor systems. 2019 IEEE 58th Conference on Decision and Control (CDC) 6863–6868 (2019) doi:10.1109/cdc40024.2019.9030180 – 10.1109/cdc40024.2019.9030180
- Beattie, C., Mehrmann, V., Xu, H. & Zwart, H. Linear port-Hamiltonian descriptor systems. Mathematics of Control, Signals, and Systems vol. 30 (2018) – 10.1007/s00498-018-0223-3
- Ezcurra, A., Elejabarrieta, M. J. & Santamaría, C. Fluid–structure coupling in the guitar box: numerical and experimental comparative study. Applied Acoustics vol. 66 411–425 (2005) – 10.1016/j.apacoust.2004.07.010
- Breiten, T., Morandin, R. & Schulze, P. Error bounds for port-Hamiltonian model and controller reduction based on system balancing. Computers & Mathematics with Applications vol. 116 100–115 (2022) – 10.1016/j.camwa.2021.07.022
- Cardoso-Ribeiro, F. L., Matignon, D. & Lefèvre, L. A partitioned finite element method for power-preserving discretization of open systems of conservation laws. IMA Journal of Mathematical Control and Information vol. 38 493–533 (2020) – 10.1093/imamci/dnaa038
- Kotyczka, P. & Lefèvre, L. Discrete-time port-Hamiltonian systems: A definition based on symplectic integration. Systems & Control Letters vol. 133 104530 (2019) – 10.1016/j.sysconle.2019.104530
- Celledoni E.. E. Celledoni and E.H. Høiseth, Energy-preserving and passivity-consistent numerical discretization of port-Hamiltonian systems, arXiv: Numerical Analysis (2017). https://arxiv.org/abs/1706.08621. (2017)
- Aoues, S., Eberard, D. & Marquis-Favre, W. Canonical interconnection of discrete linear port-Hamiltonian systems. 52nd IEEE Conference on Decision and Control 3166–3171 (2013) doi:10.1109/cdc.2013.6760366 – 10.1109/cdc.2013.6760366
- Fehr, J. et al. Morembs—A Model Order Reduction Package for Elastic Multibody Systems and Beyond. Reduced-Order Modeling (ROM) for Simulation and Optimization 141–166 (2018) doi:10.1007/978-3-319-75319-5_7 – 10.1007/978-3-319-75319-5_7
- Castagnotto A.. A. Castagnotto, Optimal model reduction by tangential interpolation: H2 and Hinf perspectives, Dissertation, Technical University Munich, Munich (2018). http://mediatum.ub.tum.de/?id=1437106. (2018)
- Pinnau, R. Model Reduction via Proper Orthogonal Decomposition. Mathematics in Industry 95–109 (2008) doi:10.1007/978-3-540-78841-6_5 – 10.1007/978-3-540-78841-6_5
- da Silva, A. C. Lectures on Symplectic Geometry. Lecture Notes in Mathematics (Springer Berlin Heidelberg, 2008). doi:10.1007/978-3-540-45330-7 – 10.1007/978-3-540-45330-7
- Xu, H. A Numerical Method for Computing an SVD-like Decomposition. SIAM Journal on Matrix Analysis and Applications vol. 26 1058–1082 (2005) – 10.1137/s0895479802410529
- Li, L., Liu, Y., Zhang, F. & Sun, Z. Several explanations on the theoretical formula of Helmholtz resonator. Advances in Engineering Software vol. 114 361–371 (2017) – 10.1016/j.advengsoft.2017.08.004
- Fletcher, N. H. & Rossing, T. D. The Physics of Musical Instruments. (Springer New York, 1991). doi:10.1007/978-1-4612-2980-3 – 10.1007/978-1-4612-2980-3