Structure preserving approximation of dissipative evolution problems
Authors
Abstract
We present a framework for the systematic numerical approximation of nonlinear evolution problems with dissipation. The approach is based on rewriting the problem in a canonical form that complies with the underlying energy-dissipation structure. We show that the corresponding weak formulation then allows for a dissipation-preserving approximation by Galerkin methods in space and discontinuous Galerkin methods in time. The proposed methodology is rather general and can be applied to a wide range of applications. This is demonstrated by discussion of some typical examples ranging from diffusive partial differential equations to dissipative Hamiltonian systems.
Keywords
37K05; 37L65; 47J35; 65J08
Citation
- Journal: Numerische Mathematik
- Year: 2019
- Volume: 143
- Issue: 1
- Pages: 85–106
- Publisher: Springer Science and Business Media LLC
- DOI: 10.1007/s00211-019-01050-w
BibTeX
@article{Egger_2019,
title={{Structure preserving approximation of dissipative evolution problems}},
volume={143},
ISSN={0945-3245},
DOI={10.1007/s00211-019-01050-w},
number={1},
journal={Numerische Mathematik},
publisher={Springer Science and Business Media LLC},
author={Egger, H.},
year={2019},
pages={85--106}
}
References
- Antoulas, A. C. Approximation of Large-Scale Dynamical Systems. (2005) doi:10.1137/1.9780898718713 – 10.1137/1.9780898718713
- Barrett, J. W. & Blowey, J. F. Finite Element Approximation of a Degenerate Allen–Cahn/Cahn–Hilliard System. SIAM Journal on Numerical Analysis vol. 39 1598–1624 (2002) – 10.1137/s0036142900382144
- Beattie, C. A., Mehrmann, V. & Van Dooren, P. Robust port-Hamiltonian representations of passive systems. Automatica vol. 100 182–186 (2019) – 10.1016/j.automatica.2018.11.013
- Dimension Reduction of Large-Scale Systems. Lecture Notes in Computational Science and Engineering (Springer Berlin Heidelberg, 2005). doi:10.1007/3-540-27909-1 – 10.1007/3-540-27909-1
- Boffi, D., Brezzi, F. & Fortin, M. Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics (Springer Berlin Heidelberg, 2013). doi:10.1007/978-3-642-36519-5 – 10.1007/978-3-642-36519-5
- Brouwer, J., Gasser, I. & Herty, M. Gas Pipeline Models Revisited: Model Hierarchies, Nonisothermal Models, and Simulations of Networks. Multiscale Modeling & Simulation vol. 9 601–623 (2011) – 10.1137/100813580
- Burger, M. et al. A mixed finite element method for nonlinear diffusion equations. Kinetic & Related Models vol. 3 59–83 (2010) – 10.3934/krm.2010.3.59
- Burger, M., Di Francesco, M., Pietschmann, J.-F. & Schlake, B. Nonlinear Cross-Diffusion with Size Exclusion. SIAM Journal on Mathematical Analysis vol. 42 2842–2871 (2010) – 10.1137/100783674
- Chaturantabut, S., Beattie, C. & Gugercin, S. Structure-Preserving Model Reduction for Nonlinear Port-Hamiltonian Systems. SIAM Journal on Scientific Computing vol. 38 B837–B865 (2016) – 10.1137/15m1055085
- R Dautray, Mathematical Analysis and Numerical Methods for Science and Technology (1992)
- Egger, H. A Robust Conservative Mixed Finite Element Method for Isentropic Compressible Flow on Pipe Networks. SIAM Journal on Scientific Computing vol. 40 A108–A129 (2018) – 10.1137/16m1094373
- Ern, A. & Guermond, J.-L. Theory and Practice of Finite Elements. Applied Mathematical Sciences (Springer New York, 2004). doi:10.1007/978-1-4757-4355-5 – 10.1007/978-1-4757-4355-5
- Evans, L. C. A survey of entropy methods for partial differential equations. Bulletin of the American Mathematical Society vol. 41 409–439 (2004) – 10.1090/s0273-0979-04-01032-8
- LC Evans, Partial Differential Equations, Volume 19 of Graduate Studies in Mathematics (2010)
- Gonzalez, O. Time integration and discrete Hamiltonian systems. Journal of Nonlinear Science vol. 6 449–467 (1996) – 10.1007/bf02440162
- Greene, J. H. & Taflove, A. General vector auxiliary differential equation finite-difference time-domain method for nonlinear optics. Optics Express vol. 14 8305 (2006) – 10.1364/oe.14.008305
- Hairer, E. & Lubich, C. Energy-diminishing integration of gradient systems. IMA Journal of Numerical Analysis vol. 34 452–461 (2013) – 10.1093/imanum/drt031
- E Hairer, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations (2006)
- Humphries, A. R. & Stuart, A. M. Runge–Kutta Methods for Dissipative and Gradient Dynamical Systems. SIAM Journal on Numerical Analysis vol. 31 1452–1485 (1994) – 10.1137/0731075
- Jüngel, A. The boundedness-by-entropy method for cross-diffusion systems. Nonlinearity vol. 28 1963–2001 (2015) – 10.1088/0951-7715/28/6/1963
- Jüngel, A. Entropy Methods for Diffusive Partial Differential Equations. SpringerBriefs in Mathematics (Springer International Publishing, 2016). doi:10.1007/978-3-319-34219-1 – 10.1007/978-3-319-34219-1
- Jüngel, A. & Milišić, J. Entropy dissipative one‐leg multistep time approximations of nonlinear diffusive equations. Numerical Methods for Partial Differential Equations vol. 31 1119–1149 (2014) – 10.1002/num.21938
- Jüngel, A. & Schuchnigg, S. Entropy-dissipating semi-discrete Runge–Kutta schemes for nonlinear diffusion equations. Communications in Mathematical Sciences vol. 15 27–53 (2017) – 10.4310/cms.2017.v15.n1.a2
- Kotyczka, P. & Lefèvre, L. Discrete-time port-Hamiltonian systems: A definition based on symplectic integration. Systems & Control Letters vol. 133 104530 (2019) – 10.1016/j.sysconle.2019.104530
- B Leimkuhler, Simulating Hamiltonian Dynamics, Volume 14 of Cambridge Monographs on Applied and Computational Mathematics (2004)
- Maksymov, I. S., Sukhorukov, A. A., Lavrinenko, A. V. & Kivshar, Y. S. Comparative Study of FDTD-Adopted Numerical Algorithms for Kerr Nonlinearities. IEEE Antennas and Wireless Propagation Letters vol. 10 143–146 (2011) – 10.1109/lawp.2011.2114319
- T Matsuo, Discrete Variational Derivative Method: A Structure-Preserving Numerical Method for Partial Differential Equations (2011)
- McLachlan, R. I., Quispel, G. R. W. & Robidoux, N. Geometric integration using discrete gradients. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences vol. 357 1021–1045 (1999) – 10.1098/rsta.1999.0363
- Monk, P. Finite Element Methods for Maxwell’s Equations. (2003) doi:10.1093/acprof:oso/9780198508885.001.0001 – 10.1093/acprof:oso/9780198508885.001.0001
- Öttinger, H. C. Beyond Equilibrium Thermodynamics. (2005) doi:10.1002/0471727903 – 10.1002/0471727903
- Öttinger, H. C. GENERIC Integrators: Structure Preserving Time Integration for Thermodynamic Systems. Journal of Non-Equilibrium Thermodynamics vol. 43 89–100 (2018) – 10.1515/jnet-2017-0034
- Prohl, A. & Schmuck, M. Convergent discretizations for the Nernst–Planck–Poisson system. Numerische Mathematik vol. 111 591–630 (2008) – 10.1007/s00211-008-0194-2
- Roubíček, T. Nonlinear Partial Differential Equations with Applications. International Series of Numerical Mathematics (Springer Basel, 2012). doi:10.1007/978-3-0348-0513-1 – 10.1007/978-3-0348-0513-1
- Model Order Reduction: Theory, Research Aspects and Applications. Mathematics in Industry (Springer Berlin Heidelberg, 2008). doi:10.1007/978-3-540-78841-6 – 10.1007/978-3-540-78841-6
- Teschl, G. Ordinary Differential Equations and Dynamical Systems. Graduate Studies in Mathematics (2012) doi:10.1090/gsm/140 – 10.1090/gsm/140
- V Thomée, Galerkin Finite Element Methods for Parabolic Problems, Volume 25 of Springer Series in Computational Mathematics (2006)
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- JL Vázquez, The Porous Medium Equation. Oxford Mathematical Monographs (2007)
- Zwart, H., Le Gorrec, Y. & Maschke, B. Building systems from simple hyperbolic ones. Systems & Control Letters vol. 91 1–6 (2016) – 10.1016/j.sysconle.2016.02.002