Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR
Authors
Hector Ramirez, Bernhard Maschke, Daniel Sbarbaro
Abstract
In this paper we suggest a class of quasi-port-Hamiltonian systems called Irreversible port-Hamiltonian Systems, that expresses simultaneously the first and second principle of thermodynamics as a structural property. These quasi-port-Hamiltonian systems are defined with respect to a structure matrix and a modulating function which depends on the thermodynamic relation between state and co-state variables of the system. This modulating function itself is the product of some positive function γ and the Poisson bracket of the entropy and the energy function. This construction guarantees that the Hamiltonian function is a conserved quantity and simultaneously that the entropy function satisfies a balance equation containing an irreversible entropy creation term. In the second part of the paper, we suggest a lift of the Irreversible Port-Hamiltonian Systems to control contact systems defined on the Thermodynamic Phase Space which is canonically endowed with a contact structure associated with Gibbs’ relation. For this class of systems we have suggested a lift which avoids any singularity of the contact Hamiltonian function and defines a control contact system on the complete Thermodynamic Phase Space, in contrast to the previously suggested lifts of such systems. Finally we derive the formulation of the balance equations of a CSTR model as an Irreversible Port-Hamiltonian System and give two alternative lifts of the CSTR model to a control contact system defined on the complete Thermodynamic Phase Space.
Keywords
Irreversible thermodynamics; Entropy; Port-Hamiltonian system; Contact structure; System theory; Chemical reactor
Citation
- Journal: Chemical Engineering Science
- Year: 2013
- Volume: 89
- Issue:
- Pages: 223–234
- Publisher: Elsevier BV
- DOI: 10.1016/j.ces.2012.12.002
BibTeX
@article{Ramirez_2013,
title={{Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR}},
volume={89},
ISSN={0009-2509},
DOI={10.1016/j.ces.2012.12.002},
journal={Chemical Engineering Science},
publisher={Elsevier BV},
author={Ramirez, Hector and Maschke, Bernhard and Sbarbaro, Daniel},
year={2013},
pages={223--234}
}
References
- Aris, (1989)
- Arnold, V. I. Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics (Springer New York, 1989). doi:10.1007/978-1-4757-2063-1 – 10.1007/978-1-4757-2063-1
- Bao, (2007)
- Brockett, Control theory and analytical mechanics. (1977)
- Couenne, F., Jallut, C., Maschke, B., Breedveld, P. C. & Tayakout, M. Bond graph modelling for chemical reactors. Mathematical and Computer Modelling of Dynamical Systems vol. 12 159–174 (2006) – 10.1080/13873950500068823
- Couenne, F., Jallut, C., Maschke, B., Tayakout, M. & Breedveld, P. Bond graph for dynamic modelling in chemical engineering. Chemical Engineering and Processing: Process Intensification vol. 47 1994–2003 (2008) – 10.1016/j.cep.2007.09.006
- Couenne, F., Jallut, C., Maschke, B., Tayakout, M. & Breedveld, P. Structured modeling for processes: A thermodynamical network theory. Computers & Chemical Engineering vol. 32 1120–1134 (2008) – 10.1016/j.compchemeng.2007.04.012
- Dörfler, F., Johnsen, J. K. & Allgöwer, F. An introduction to interconnection and damping assignment passivity-based control in process engineering. Journal of Process Control vol. 19 1413–1426 (2009) – 10.1016/j.jprocont.2009.07.015
- (2009)
- Eberard, D., Maschke, B. & van der Schaft, A. J. CONSERVATIVE SYSTEMS WITH PORTS ON CONTACT MANIFOLDS. IFAC Proceedings Volumes vol. 38 342–347 (2005) – 10.3182/20050703-6-cz-1902.00711
- Eberard, D., Maschke, B. M. & van der Schaft, A. J. An extension of Hamiltonian systems to the thermodynamic phase space: Towards a geometry of nonreversible processes. Reports on Mathematical Physics vol. 60 175–198 (2007) – 10.1016/s0034-4877(07)00024-9
- Favache, A. & Dochain, D. Thermodynamics and chemical systems stability: The CSTR case study revisited. Journal of Process Control vol. 19 371–379 (2009) – 10.1016/j.jprocont.2008.07.007
- Favache, A. & Dochain, D. Power-shaping control of reaction systems: The CSTR case. Automatica vol. 46 1877–1883 (2010) – 10.1016/j.automatica.2010.07.011
- Favache, A., Dochain, D. & Maschke, B. An entropy-based formulation of irreversible processes based on contact structures. Chemical Engineering Science vol. 65 5204–5216 (2010) – 10.1016/j.ces.2010.06.019
- Favache, A., Dochain, D. & Winkin, J. J. Power-shaping control: Writing the system dynamics into the Brayton–Moser form. Systems & Control Letters vol. 60 618–624 (2011) – 10.1016/j.sysconle.2011.04.021
- Favache, A., Dos Santos Martins, V. S., Dochain, D. & Maschke, B. Some Properties of Conservative Port Contact Systems. IEEE Transactions on Automatic Control vol. 54 2341–2351 (2009) – 10.1109/tac.2009.2028973
- Gibbs, A method of geometrical representation of the thermodynamic properties of substances by means of surfaces. Trans. Conn. Acad. (1873)
- Grmela, M. Complex fluids subjected to external influences. Journal of Non-Newtonian Fluid Mechanics vol. 96 221–254 (2001) – 10.1016/s0377-0257(00)00186-5
- Grmela, M. Lagrange hydrodynamics as extended Euler hydrodynamics: Hamiltonian and GENERIC structures. Physics Letters A vol. 296 97–104 (2002) – 10.1016/s0375-9601(02)00190-1
- Grmela, M. & Öttinger, H. C. Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Physical Review E vol. 56 6620–6632 (1997) – 10.1103/physreve.56.6620
- Hangos, K. M., Bokor, J. & Szederkényi, G. Hamiltonian view on process systems. AIChE Journal vol. 47 1819–1831 (2001) – 10.1002/aic.690470813
- Hermann, (1973)
- Hermann, (1974)
- Hoang, H., Couenne, F., Jallut, C. & Le Gorrec, Y. The port Hamiltonian approach to modeling and control of Continuous Stirred Tank Reactors. Journal of Process Control vol. 21 1449–1458 (2011) – 10.1016/j.jprocont.2011.06.014
- Hoang, H., Couenne, F., Jallut, C. & Le Gorrec, Y. Lyapunov-based control of non isothermal continuous stirred tank reactors using irreversible thermodynamics. Journal of Process Control vol. 22 412–422 (2012) – 10.1016/j.jprocont.2011.12.007
- Johnsen, J. K., Dorfler, F. & Allgower, F. L<inf>2</inf>-gain of Port-Hamiltonian systems and application to a biochemical fermenter model. 2008 American Control Conference 153–158 (2008) doi:10.1109/acc.2008.4586483 – 10.1109/acc.2008.4586483
- Jongschaap, R. & Öttinger, H. C. The mathematical representation of driven thermodynamic systems. Journal of Non-Newtonian Fluid Mechanics vol. 120 3–9 (2004) – 10.1016/j.jnnfm.2003.11.008
- Kondepudi, (1998)
- Libermann, (1987)
- Maschke, B. M., Van Der Schaft, A. J. & Breedveld, P. C. An intrinsic hamiltonian formulation of network dynamics: non-standard poisson structures and gyrators. Journal of the Franklin Institute vol. 329 923–966 (1992) – 10.1016/s0016-0032(92)90049-m
- Maschke, B. M., van der Schaft, A. J. & Breedveld, P. C. An intrinsic Hamiltonian formulation of the dynamics of LC-circuits. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications vol. 42 73–82 (1995) – 10.1109/81.372847
- MrugaŁa, R. Geometrical formulation of equilibrium phenomenological thermodynamics. Reports on Mathematical Physics vol. 14 419–427 (1978) – 10.1016/0034-4877(78)90010-1
- Mrugała, R. Continuous contact transformations in thermodynamics. Reports on Mathematical Physics vol. 33 149–154 (1993) – 10.1016/0034-4877(93)90050-o
- Mrugaa̵, R. On a special family of thermodynamic processes and their invariants. Reports on Mathematical Physics vol. 46 461–468 (2000) – 10.1016/s0034-4877(00)90012-0
- Mrugala, R., Nulton, J. D., Christian Schön, J. & Salamon, P. Contact structure in thermodynamic theory. Reports on Mathematical Physics vol. 29 109–121 (1991) – 10.1016/0034-4877(91)90017-h
- Muschik, W., Gümbel, S., Kröger, M. & Öttinger, H. C. A simple example for comparing GENERIC with rational non-equilibrium thermodynamics. Physica A: Statistical Mechanics and its Applications vol. 285 448–466 (2000) – 10.1016/s0378-4371(00)00252-1
- Ortega, J.-P. & Planas-Bielsa, V. Dynamics on Leibniz manifolds. Journal of Geometry and Physics vol. 52 1–27 (2004) – 10.1016/j.geomphys.2004.01.002
- Ortega, R., Astolfi, A., Bastin, G. & Rodriguez, H. Stabilization of food-chain systems using a port-controlled Hamiltonian description. Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334) (2000) doi:10.1109/acc.2000.878579 – 10.1109/acc.2000.878579
- Ortega, R., van der Schaft, A., Castanos, F. & Astolfi, A. Control by Interconnection and Standard Passivity-Based Control of Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 53 2527–2542 (2008) – 10.1109/tac.2008.2006930
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Oster, G. F. & Perelson, A. S. Chemical reaction dynamics. Archive for Rational Mechanics and Analysis vol. 55 230–274 (1974) – 10.1007/bf00281751
- Otero-Muras, I., Szederkényi, G., Alonso, A. A. & Hangos, K. M. Local dissipative Hamiltonian description of reversible reaction networks. Systems & Control Letters vol. 57 554–560 (2008) – 10.1016/j.sysconle.2007.12.003
- Öttinger, H. C. & Grmela, M. Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism. Physical Review E vol. 56 6633–6655 (1997) – 10.1103/physreve.56.6633
- Prigogine, (1954)
- Ramirez, H., Maschke, B. & Sbarbaro, D. On the Hamiltonian formulation of the CSTR. 49th IEEE Conference on Decision and Control (CDC) 3301–3306 (2010) doi:10.1109/cdc.2010.5717317 – 10.1109/cdc.2010.5717317
- Ramirez Estay, H., Maschke, B. & Sbarbaro, D. About structure preserving feedback of controlled contact systems. IEEE Conference on Decision and Control and European Control Conference 2305–2310 (2011) doi:10.1109/cdc.2011.6160371 – 10.1109/cdc.2011.6160371
- Ramírez, H., Sbarbaro, D. & Ortega, R. On the control of non-linear processes: An IDA–PBC approach. Journal of Process Control vol. 19 405–414 (2009) – 10.1016/j.jprocont.2008.06.018
- Sandler, (2006)
- Sbarbaro, D. & Ortega, R. Averaging level control: An approach based on mass balance. Journal of Process Control vol. 17 621–629 (2007) – 10.1016/j.jprocont.2007.01.005
- Sira-Ramirez, H. & Angulo-Nunez, M. I. Passivity-based control of nonlinear chemical processes. International Journal of Control vol. 68 971–996 (1997) – 10.1080/002071797223163
- Smale, S. On the mathematical foundations of electrical circuit theory. Journal of Differential Geometry vol. 7 (1972) – 10.4310/jdg/1214430827
- van der Schaft, On feedback control of Hamiltonian systems. (1986)
- van der Schaft, System theory and mechanics. (1989)
- van der Schaft, Port-Hamiltonian systems. (2004)
- van der Schaft, The Hamiltonian formulation of energy conserving physical systems with external ports. Arch. für Elektron. Übertragungstech. (1995)
- van der Schaft, Conservation laws and lumped system dynamics. (2009)
- van der Schaft, A. & Maschke, B. A Port-Hamiltonian Formulation of Open Chemical Reaction Networks. Lecture Notes in Control and Information Sciences 339–348 (2010) doi:10.1007/978-3-642-16135-3_27 – 10.1007/978-3-642-16135-3_27