Linear port-Hamiltonian descriptor systems
Authors
Christopher Beattie, Volker Mehrmann, Hongguo Xu, Hans Zwart
Abstract
The modeling framework of port-Hamiltonian systems is systematically extended to linear constrained dynamical systems (descriptor systems, differential-algebraic equations) of arbitrary index and with time-varying constraints. A new algebraically and geometrically defined system structure is derived. It is shown that this structure is invariant under equivalence transformations, and that it is adequate also for the modeling of high-index descriptor systems. The regularization procedure for descriptor systems to make them suitable for simulation and control is modified to preserve the port-Hamiltonian form. The relevance of the new structure is demonstrated with several examples.
Keywords
Port-Hamiltonian system; Descriptor system; Differential-algebraic equation; Passivity; Stability; System transformation; Differentiation index; Strangeness-index; Skew-adjoint operator; 93A30; 65L80; 93B17; 93B11
Citation
- Journal: Mathematics of Control, Signals, and Systems
- Year: 2018
- Volume: 30
- Issue: 4
- Pages:
- Publisher: Springer Science and Business Media LLC
- DOI: 10.1007/s00498-018-0223-3
BibTeX
@article{Beattie_2018,
title={{Linear port-Hamiltonian descriptor systems}},
volume={30},
ISSN={1435-568X},
DOI={10.1007/s00498-018-0223-3},
number={4},
journal={Mathematics of Control, Signals, and Systems},
publisher={Springer Science and Business Media LLC},
author={Beattie, Christopher and Mehrmann, Volker and Xu, Hongguo and Zwart, Hans},
year={2018}
}
References
- Bals J, Hofer G, Pfeiffer A, Schallert C (2005) Virtual iron bird—a multidisciplinary modelling and simulation platform for new aircraft system architectures. In: Deutscher Luft-und Raumfahrtkongress, Friedrichshafen, Germany
- Beattie, C. & Gugercin, S. Structure-preserving model reduction for nonlinear port-Hamiltonian systems. IEEE Conference on Decision and Control and European Control Conference 6564–6569 (2011) doi:10.1109/cdc.2011.6161504 – 10.1109/cdc.2011.6161504
- Binder A, Mehrmann V, Miedlar A, Schulze P (2015) A Matlab toolbox for the regularization of descriptor systems arising from generalized realization procedures. Preprint 24–2015, Institut für Mathematik, TU Berlin
- PC Breedveld. Breedveld PC (2008) Modeling and simulation of dynamic systems using bond graphs. EOLSS Publishers Co. Ltd./UNESCO, Oxford, pp 128–173 (2008)
- KE Brenan. Brenan KE, Campbell SL, Petzold LR (1996) Numerical solution of initial-value problems in differential algebraic equations, 2nd edn. SIAM Publications, Philadelphia (1996)
- Bunse-Gerstner, A., Byers, R., Mehrmann, V. & Nichols, N. K. Feedback design for regularizing descriptor systems. Linear Algebra and its Applications vol. 299 119–151 (1999) – 10.1016/s0024-3795(99)00167-6
- Byers, R., Kunkel, P. & Mehrmann, V. Regularization of Linear Descriptor Systems with Variable Coefficients. SIAM Journal on Control and Optimization vol. 35 117–133 (1997) – 10.1137/s0363012994278936
- Byrnes, C. I., Isidori, A. & Willems, J. C. Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems. IEEE Transactions on Automatic Control vol. 36 1228–1240 (1991) – 10.1109/9.100932
- Campbell, S. L. A General Form for Solvable Linear Time Varying Singular Systems of Differential Equations. SIAM Journal on Mathematical Analysis vol. 18 1101–1115 (1987) – 10.1137/0518081
- Campbell, S. L. Linearization of DAEs along trajectories. ZAMP Zeitschrift f�r angewandte Mathematik und Physik vol. 46 70–84 (1995) – 10.1007/bf00952257
- SL Campbell. Campbell SL, Kunkel P, Mehrmann V (2012) Regularization of linear and nonlinear descriptor systems. In: Biegler LT, Campbell SL, Mehrmann V (eds) Control and optimization with differential-algebraic constraints, advances in control and design, chapter 2. SIAM Publications, Philadelphia, pp 17–36 (2012)
- Couenne, F., Jallut, C., Maschke, B., Tayakout, M. & Breedveld, P. Bond graph for dynamic modelling in chemical engineering. Chemical Engineering and Processing: Process Intensification vol. 47 1994–2003 (2008) – 10.1016/j.cep.2007.09.006
- Singular Control Systems. Lecture Notes in Control and Information Sciences (Springer-Verlag, 1989). doi:10.1007/bfb0002475 – 10.1007/bfb0002475
- Dirac, P. A. M. Generalized Hamiltonian Dynamics. Canadian Journal of Mathematics vol. 2 129–148 (1950) – 10.4153/cjm-1950-012-1
- Egger, H. & Kugler, T. Damped wave systems on networks: exponential stability and uniform approximations. Numerische Mathematik vol. 138 839–867 (2017) – 10.1007/s00211-017-0924-4
- Egger, H., Kugler, T., Liljegren-Sailer, B., Marheineke, N. & Mehrmann, V. On Structure-Preserving Model Reduction for Damped Wave Propagation in Transport Networks. SIAM Journal on Scientific Computing vol. 40 A331–A365 (2018) – 10.1137/17m1125303
- Eich-Soellner, E. & Führer, C. Numerical Methods in Multibody Dynamics. European Consortium for Mathematics in Industry (Vieweg+Teubner Verlag, 1998). doi:10.1007/978-3-663-09828-7 – 10.1007/978-3-663-09828-7
- Freund, R. W. The SPRIM Algorithm for Structure-Preserving Order Reduction of General RCL Circuits. Lecture Notes in Electrical Engineering 25–52 (2011) doi:10.1007/978-94-007-0089-5_2 – 10.1007/978-94-007-0089-5_2
- Fujimoto, K. & Sugie, T. Canonical transformation and stabilization of generalized Hamiltonian systems. Systems & Control Letters vol. 42 217–227 (2001) – 10.1016/s0167-6911(00)00091-8
- Gillis, N., Mehrmann, V. & Sharma, P. Computing the nearest stable matrix pairs. Numerical Linear Algebra with Applications vol. 25 (2018) – 10.1002/nla.2153
- G Golo. Golo G, van der Schaft AJ, Breedveld PC, Maschke BM (2003) Hamiltonian formulation of bond graphs. In: Rantzer A, Johansson R (eds) Nonlinear and hybrid systems in automotive control. Springer, Heidelberg, pp 351–372 (2003)
- Gugercin, S., Polyuga, R. V., Beattie, C. & van der Schaft, A. Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems. Automatica vol. 48 1963–1974 (2012) – 10.1016/j.automatica.2012.05.052
- Hiller, M. H. & Hirsch, K. Multibody system dynamics and mechatronics. ZAMM vol. 86 87–109 (2006) – 10.1002/zamm.200510253
- D Hinrichsen. Hinrichsen D, Pritchard AJ (2005) Mathematical system theory I. Modelling, state space analysis, stability and robustness. Springer, New York (2005)
- Hou M (1994) A three-link planar manipulator model. Sicherheitstechnische Regelungs- und Meßtechnik. Bergische Universität-GH Wuppertal, Wuppertal
- Hou M, Müller PC (1994) $LQ$ and tracking control of descriptor systems with application to constrained manipulator. Technical report, Sicherheitstechnische Regelungs- und Meßtechnik, Universität Wuppertal, Gauß-Straße, Wuppertal 1, Germany
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1
- Kleijn C (2013)20-sim 4C 2.1 Reference manual. Controlab Products B.V
- Kunkel, P. & Mehrmann, V. Analysis of Over- and Underdetermined Nonlinear Differential-Algebraic Systems with Application to Nonlinear Control Problems. Mathematics of Control, Signals, and Systems vol. 14 233–256 (2001) – 10.1007/pl00009884
- Kunkel, P. & Mehrmann, V. Differential-Algebraic Equations. EMS Textbooks in Mathematics (2006) doi:10.4171/017 – 10.4171/017
- Kunkel, P., Mehrmann, V. & Rath, W. Analysis and Numerical Solution of Control Problems in Descriptor Form. Mathematics of Control, Signals, and Systems vol. 14 29–61 (2001) – 10.1007/pl00009876
- Kunkel, P., Mehrmann, V. & Scholz, L. Self-adjoint differential-algebraic equations. Mathematics of Control, Signals, and Systems vol. 26 47–76 (2013) – 10.1007/s00498-013-0109-3
- Lamour, R., März, R. & Tischendorf, C. Differential-Algebraic Equations: A Projector Based Analysis. (Springer Berlin Heidelberg, 2013). doi:10.1007/978-3-642-27555-5 – 10.1007/978-3-642-27555-5
- Maschke, B. M., Van Der Schaft, A. J. & Breedveld, P. C. An intrinsic hamiltonian formulation of network dynamics: non-standard poisson structures and gyrators. Journal of the Franklin Institute vol. 329 923–966 (1992) – 10.1016/s0016-0032(92)90049-m
- Mehl, C., Mehrmann, V. & Wojtylak, M. Linear Algebra Properties of Dissipative Hamiltonian Descriptor Systems. SIAM Journal on Matrix Analysis and Applications vol. 39 1489–1519 (2018) – 10.1137/18m1164275
- V Mehrmann. Mehrmann V, Schröder C (2011) Nonlinear eigenvalue and frequency response problems in industrial practice. J Math Ind 1:18 (2011)
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Polderman, J. W. & Willems, J. C. Introduction to Mathematical Systems Theory. Texts in Applied Mathematics (Springer New York, 1998). doi:10.1007/978-1-4757-2953-5 – 10.1007/978-1-4757-2953-5
- Polyuga, R. V. & van der Schaft, A. Structure preserving model reduction of port-Hamiltonian systems by moment matching at infinity. Automatica vol. 46 665–672 (2010) – 10.1016/j.automatica.2010.01.018
- Advanced Multibody System Dynamics. Solid Mechanics and Its Applications (Springer Netherlands, 1993). doi:10.1007/978-94-017-0625-4 – 10.1007/978-94-017-0625-4
- K Schlacher. Schlacher K, Kugi A (2001) Automatic control of mechatronic systems. Int J Appl Math Comput Sci 11(1):131–164 (2001)
- Scholz L (2017) Condensed forms for linear port-Hamiltonian descriptor systems. Preprint 09–2017. Institut für Mathematik, TU Berlin
- Trautenberg W Simpack 8.9. Manual, INTEC GmbH, Angelrieder Feld 13, 82234 Wessling
- Schaft, A. J. Port-Hamiltonian Systems: Network Modeling and Control of Nonlinear Physical Systems. Advanced Dynamics and Control of Structures and Machines 127–167 (2004) doi:10.1007/978-3-7091-2774-2_9 – 10.1007/978-3-7091-2774-2_9
- van der Schaft AJ (2006) Port-Hamiltonian systems: an introductory survey. In: Verona JL, Sanz-Sole M, Verdura J (eds) Proceedings of the international congress of mathematicians, vol. III, invited lectures, Madrid, Spain, pp 1339–1365
- van der Schaft, A. J. Port-Hamiltonian Differential-Algebraic Systems. Surveys in Differential-Algebraic Equations I 173–226 (2013) doi:10.1007/978-3-642-34928-7_5 – 10.1007/978-3-642-34928-7_5
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3