Dissipative Shallow Water Equations: a port-Hamiltonian formulation
Authors
Flávio Luiz Cardoso-Ribeiro, Denis Matignon, Laurent Lefèvre
Abstract
The dissipative Shallow Water Equations (DSWEs) are investigated as port-Hamiltonian systems. Dissipation models of different types are considered: either as nonlinear bounded operators, or as linear unbounded operators involving a classical diffusion term in 1D, or the vectorial Laplacian in 2D. In order to recast the dissipative SWE into the framework of pHs with dissipation, a physically meaningful factorization of the vectorial Laplacian is being used, which nicely separates the divergent and the rotational components of the velocity field. Finally, the structure-preserving numerical scheme provided by the Partitioned Finite Element Method (PFEM) is applied to the nonlinear bounded dissipative fluid models. For the linear unbounded cases, a change of variables is highlighted, to transform the DSWEs into a new pHs with a polynomial structure, which proves more suitable for numerics.
Keywords
Shallow Water Equations (SWE); Port-Hamiltonian systems (pHs); Dissipative PDEs; Partitioned Finite Element Method (PFEM)
Citation
- Journal: IFAC-PapersOnLine
- Year: 2021
- Volume: 54
- Issue: 19
- Pages: 167–172
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2021.11.073
- Note: 7th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2021- Berlin, Germany, 11-13 October 2021
BibTeX
@article{Cardoso_Ribeiro_2021,
title={{Dissipative Shallow Water Equations: a port-Hamiltonian formulation}},
volume={54},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2021.11.073},
number={19},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Cardoso-Ribeiro, Flávio Luiz and Matignon, Denis and Lefèvre, Laurent},
year={2021},
pages={167--172}
}
References
- Barati, Analysis of dynamic wave model for flood routing in natural rivers. Water Science and Engineering (2012)
- Brugnoli, A., Haine, G., Serhani, A. & Vasseur, X. Numerical Approximation of Port-Hamiltonian Systems for Hyperbolic or Parabolic PDEs with Boundary Control. Journal of Applied Mathematics and Physics vol. 09 1278–1321 (2021) – 10.4236/jamp.2021.96088
- Califano, F., Rashad, R., Schuller, F. P. & Stramigioli, S. Geometric and energy-aware decomposition of the Navier–Stokes equations: A port-Hamiltonian approach. Physics of Fluids vol. 33 (2021) – 10.1063/5.0048359
- Cardoso-Ribeiro, F. L., Brugnoli, A., Matignon, D. & Lefevre, L. Port-Hamiltonian modeling, discretization and feedback control of a circular water tank. 2019 IEEE 58th Conference on Decision and Control (CDC) 6881–6886 (2019) doi:10.1109/cdc40024.2019.9030007 – 10.1109/cdc40024.2019.9030007
- Cardoso-Ribeiro, F. L., Matignon, D. & Pommier-Budinger, V. A port-Hamiltonian model of liquid sloshing in moving containers and application to a fluid-structure system. Journal of Fluids and Structures vol. 69 402–427 (2017) – 10.1016/j.jfluidstructs.2016.12.007
- Cardoso-Ribeiro, F. L., Matignon, D. & Pommier-Budinger, V. Port-Hamiltonian model of two-dimensional shallow water equations in moving containers. IMA Journal of Mathematical Control and Information vol. 37 1348–1366 (2020) – 10.1093/imamci/dnaa016
- Cardoso-Ribeiro, F. L., Matignon, D. & Lefèvre, L. A partitioned finite element method for power-preserving discretization of open systems of conservation laws. IMA Journal of Mathematical Control and Information vol. 38 493–533 (2020) – 10.1093/imamci/dnaa038
- Cho, Y.-S., Sohn, D.-H. & Lee, S. O. Practical modified scheme of linear shallow-water equations for distant propagation of tsunamis. Ocean Engineering vol. 34 1769–1777 (2007) – 10.1016/j.oceaneng.2006.08.014
- Clifford, M., Horton, C. & Schmitz, J. SWAFS: shallow water analysis and forecast system. Proceedings of OCEANS’94 vol. 3 III/82-III/87 – 10.1109/oceans.1994.364176
- Duindam, (2009)
- Edwards, An analysis of single and double generator thermodynamic formalisms for the macroscopic description of complex fluids. J. Non-Equil. Thermodyn. (1998)
- Hamroun, B., Lefevre, L. & Mendes, E. Port-based modelling and geometric reduction for open channel irrigation systems. 2007 46th IEEE Conference on Decision and Control 1578–1583 (2007) doi:10.1109/cdc.2007.4434237 – 10.1109/cdc.2007.4434237
- James, F., Lagrée, P.-Y., Le, M. H. & Legrand, M. Towards a new friction model for shallow water equations through an interactive viscous layer. ESAIM: Mathematical Modelling and Numerical Analysis vol. 53 269–299 (2019) – 10.1051/m2an/2018076
- Kirstetter, G. et al. Modeling rain-driven overland flow: Empirical versus analytical friction terms in the shallow water approximation. Journal of Hydrology vol. 536 1–9 (2016) – 10.1016/j.jhydrol.2016.02.022
- Mora, L. A., Gorrec, Y. L., Matignon, D., Ramirez, H. & Yuz, J. I. About Dissipative and Pseudo Port-Hamiltonian Formulations of Irreversible Newtonian Compressible Flows. IFAC-PapersOnLine vol. 53 11521–11526 (2020) – 10.1016/j.ifacol.2020.12.604
- Pasumarthy, R., Ambati, V. R. & van der Schaft, A. J. Port-Hamiltonian discretization for open channel flows. Systems & Control Letters vol. 61 950–958 (2012) – 10.1016/j.sysconle.2012.05.003
- Qian, E., Kramer, B., Marques, A. N. & Willcox, K. E. Transform & Learn: A data-driven approach to nonlinear model reduction. AIAA Aviation 2019 Forum (2019) doi:10.2514/6.2019-3707 – 10.2514/6.2019-3707
- Serhani, A., Haine, G. & Matignon, D. Anisotropic heterogeneous n-D heat equation with boundary control and observation: I. Modeling as port-Hamiltonian system. IFAC-PapersOnLine vol. 52 51–56 (2019) – 10.1016/j.ifacol.2019.07.009
- Serhani, A partitioned finite element method for the structure-preserving discretization of damped infinite-dimensional port-Hamiltonian systems with boundary control. (2019)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Zwart, H., Le Gorrec, Y. & Maschke, B. Building systems from simple hyperbolic ones. Systems & Control Letters vol. 91 1–6 (2016) – 10.1016/j.sysconle.2016.02.002