Structure-preserving model reduction for port-Hamiltonian systems based on separable nonlinear approximation ansatzes
Authors
Abstract
We discuss structure-preserving model order reduction for port-Hamiltonian systems based on a nonlinear approximation ansatz which is linear with respect to a part of the state variables of the reduced-order model. In recent years, such nonlinear approximation ansatzes have gained more and more attention especially due to their effectiveness in the context of model reduction for transport-dominated systems which are challenging for classical linear model reduction techniques. We demonstrate that port-Hamiltonian reduced-order models can often be obtained by a residual minimization approach where a suitable weighted norm is used for the residual. Moreover, we discuss sufficient conditions for the resulting reduced-order models to be stable. Finally, the methodology is illustrated by means of two transport-dominated numerical test cases, where the ansatz functions are determined based on snapshot data of the full-order state.
Citation
- Journal: Frontiers in Applied Mathematics and Statistics
- Year: 2023
- Volume: 9
- Issue:
- Pages:
- Publisher: Frontiers Media SA
- DOI: 10.3389/fams.2023.1160250
BibTeX
@article{Schulze_2023,
title={{Structure-preserving model reduction for port-Hamiltonian systems based on separable nonlinear approximation ansatzes}},
volume={9},
ISSN={2297-4687},
DOI={10.3389/fams.2023.1160250},
journal={Frontiers in Applied Mathematics and Statistics},
publisher={Frontiers Media SA},
author={Schulze, Philipp},
year={2023}
}
References
- Antoulas, A. C. Approximation of Large-Scale Dynamical Systems. (2005) doi:10.1137/1.9780898718713 – 10.1137/1.9780898718713
- Model Reduction and Approximation. (2017) doi:10.1137/1.9781611974829 – 10.1137/1.9781611974829
- Hesthaven, J. S., Rozza, G. & Stamm, B. Certified Reduced Basis Methods for Parametrized Partial Differential Equations. SpringerBriefs in Mathematics (Springer International Publishing, 2016). doi:10.1007/978-3-319-22470-1 – 10.1007/978-3-319-22470-1
- Quarteroni, A., Manzoni, A. & Negri, F. Reduced Basis Methods for Partial Differential Equations. UNITEXT (Springer International Publishing, 2016). doi:10.1007/978-3-319-15431-2 – 10.1007/978-3-319-15431-2
- Model Order Reduction: Theory, Research Aspects and Applications. Mathematics in Industry (Springer Berlin Heidelberg, 2008). doi:10.1007/978-3-540-78841-6 – 10.1007/978-3-540-78841-6
- Barnett, J. & Farhat, C. Quadratic approximation manifold for mitigating the Kolmogorov barrier in nonlinear projection-based model order reduction. Journal of Computational Physics vol. 464 111348 (2022) – 10.1016/j.jcp.2022.111348
- Black, F., Schulze, P. & Unger, B. Projection-based model reduction with dynamically transformed modes. ESAIM: Mathematical Modelling and Numerical Analysis vol. 54 2011–2043 (2020) – 10.1051/m2an/2020046
- Cagniart, N., Maday, Y. & Stamm, B. Model Order Reduction for Problems with Large Convection Effects. Computational Methods in Applied Sciences 131–150 (2018) doi:10.1007/978-3-319-78325-3_10 – 10.1007/978-3-319-78325-3_10
- Fresca, S., Dede’, L. & Manzoni, A. A Comprehensive Deep Learning-Based Approach to Reduced Order Modeling of Nonlinear Time-Dependent Parametrized PDEs. Journal of Scientific Computing vol. 87 (2021) – 10.1007/s10915-021-01462-7
- Kim, Y., Choi, Y., Widemann, D. & Zohdi, T. A fast and accurate physics-informed neural network reduced order model with shallow masked autoencoder. Journal of Computational Physics vol. 451 110841 (2022) – 10.1016/j.jcp.2021.110841
- Lee, K. & Carlberg, K. T. Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders. Journal of Computational Physics vol. 404 108973 (2020) – 10.1016/j.jcp.2019.108973
- Ohlberger, Reduced basis methods: success, limitations and future challenges. Proceedings of the Conference Algoritmy (2016)
- Antoulas, A. C. A new result on passivity preserving model reduction. Systems & Control Letters vol. 54 361–374 (2005) – 10.1016/j.sysconle.2004.07.007
- Benner, P. & Stykel, T. Model Order Reduction for Differential-Algebraic Equations: A Survey. Differential-Algebraic Equations Forum 107–160 (2017) doi:10.1007/978-3-319-46618-7_3 – 10.1007/978-3-319-46618-7_3
- Breiten, T. & Unger, B. Passivity preserving model reduction via spectral factorization. Automatica vol. 142 110368 (2022) – 10.1016/j.automatica.2022.110368
- Selga, R. C., Lohmann, B. & Eid, R. Stability Preservation in Projection-based Model Order Reduction of Large Scale Systems. European Journal of Control vol. 18 122–132 (2012) – 10.3166/ejc.18.122-132
- Cheng, X. & Scherpen, J. M. A. Model Reduction Methods for Complex Network Systems. Annual Review of Control, Robotics, and Autonomous Systems vol. 4 425–453 (2021) – 10.1146/annurev-control-061820-083817
- Monshizadeh, N., Trentelman, H. L. & Kanat Camlibel, M. Stability and synchronization preserving model reduction of multi-agent systems. Systems & Control Letters vol. 62 1–10 (2013) – 10.1016/j.sysconle.2012.10.011
- Pulch, R. Stability-preserving model order reduction for linear stochastic Galerkin systems. Journal of Mathematics in Industry vol. 9 (2019) – 10.1186/s13362-019-0067-6
- Sorensen, D. C. Passivity preserving model reduction via interpolation of spectral zeros. Systems & Control Letters vol. 54 347–360 (2005) – 10.1016/j.sysconle.2004.07.006
- Kotyczka, Numerical Methods for Distributed Parameter Port-Hamiltonian Systems (2019)
- Mehrmann, V. & Unger, B. Control of port-Hamiltonian differential-algebraic systems and applications. Acta Numerica vol. 32 395–515 (2023) – 10.1017/s0962492922000083
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Ortega, R., van der Schaft, A., Castanos, F. & Astolfi, A. Control by Interconnection and Standard Passivity-Based Control of Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 53 2527–2542 (2008) – 10.1109/tac.2008.2006930
- van der Schaft, A. Port-Hamiltonian Modeling for Control. Annual Review of Control, Robotics, and Autonomous Systems vol. 3 393–416 (2020) – 10.1146/annurev-control-081219-092250
- Schaller, M., Philipp, F., Faulwasser, T., Worthmann, K. & Maschke, B. Control of port-Hamiltonian systems with minimal energy supply. European Journal of Control vol. 62 33–40 (2021) – 10.1016/j.ejcon.2021.06.017
- Altmann, R., Mehrmann, V. & Unger, B. Port-Hamiltonian formulations of poroelastic network models. Mathematical and Computer Modelling of Dynamical Systems vol. 27 429–452 (2021) – 10.1080/13873954.2021.1975137
- Fiaz, S., Zonetti, D., Ortega, R., Scherpen, J. M. A. & van der Schaft, A. J. A port-Hamiltonian approach to power network modeling and analysis. European Journal of Control vol. 19 477–485 (2013) – 10.1016/j.ejcon.2013.09.002
- Altmann, R. & Schulze, P. A port-Hamiltonian formulation of the Navier–Stokes equations for reactive flows. Systems & Control Letters vol. 100 51–55 (2017) – 10.1016/j.sysconle.2016.12.005
- Bansal, H. et al. Port-Hamiltonian formulation of two-phase flow models. Systems & Control Letters vol. 149 104881 (2021) – 10.1016/j.sysconle.2021.104881
- Brugnoli, A., Alazard, D., Pommier-Budinger, V. & Matignon, D. Port-Hamiltonian formulation and symplectic discretization of plate models Part I: Mindlin model for thick plates. Applied Mathematical Modelling vol. 75 940–960 (2019) – 10.1016/j.apm.2019.04.035
- Brugnoli, A., Alazard, D., Pommier-Budinger, V. & Matignon, D. Port-Hamiltonian formulation and symplectic discretization of plate models Part II: Kirchhoff model for thin plates. Applied Mathematical Modelling vol. 75 961–981 (2019) – 10.1016/j.apm.2019.04.036
- Gernandt, H., Haller, F. E., Reis, T. & Schaft, A. J. van der. Port-Hamiltonian formulation of nonlinear electrical circuits. Journal of Geometry and Physics vol. 159 103959 (2021) – 10.1016/j.geomphys.2020.103959
- Hoang, H., Couenne, F., Jallut, C. & Le Gorrec, Y. The port Hamiltonian approach to modeling and control of Continuous Stirred Tank Reactors. Journal of Process Control vol. 21 1449–1458 (2011) – 10.1016/j.jprocont.2011.06.014
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM Journal on Control and Optimization vol. 43 743–767 (2004) – 10.1137/s0363012903429530
- Mora, L. A., Le Gorrec, Y., Matignon, D., Ramirez, H. & Yuz, J. I. On port-Hamiltonian formulations of 3-dimensional compressible Newtonian fluids. Physics of Fluids vol. 33 (2021) – 10.1063/5.0067784
- Ramirez, H., Maschke, B. & Sbarbaro, D. Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR. Chemical Engineering Science vol. 89 223–234 (2013) – 10.1016/j.ces.2012.12.002
- Rashad, R., Califano, F., Schuller, F. P. & Stramigioli, S. Port-Hamiltonian modeling of ideal fluid flow: Part I. Foundations and kinetic energy. Journal of Geometry and Physics vol. 164 104201 (2021) – 10.1016/j.geomphys.2021.104201
- Wang, L., Maschke, B. & van der Schaft, A. Port-Hamiltonian modeling of non-isothermal chemical reaction networks. Journal of Mathematical Chemistry vol. 56 1707–1727 (2018) – 10.1007/s10910-018-0882-9
- Warsewa, A., Böhm, M., Sawodny, O. & Tarín, C. A port-Hamiltonian approach to modeling the structural dynamics of complex systems. Applied Mathematical Modelling vol. 89 1528–1546 (2021) – 10.1016/j.apm.2020.07.038
- Cardoso-Ribeiro, F. L., Matignon, D. & Pommier-Budinger, V. A port-Hamiltonian model of liquid sloshing in moving containers and application to a fluid-structure system. Journal of Fluids and Structures vol. 69 402–427 (2017) – 10.1016/j.jfluidstructs.2016.12.007
- Falaize, A. & Hélie, T. Passive simulation of the nonlinear port-Hamiltonian modeling of a Rhodes Piano. Journal of Sound and Vibration vol. 390 289–309 (2017) – 10.1016/j.jsv.2016.11.008
- Voß, T. & Scherpen, J. M. A. Port-Hamiltonian Modeling of a Nonlinear Timoshenko Beam with Piezo Actuation. SIAM Journal on Control and Optimization vol. 52 493–519 (2014) – 10.1137/090774598
- Vu, N. M. T., Lefèvre, L. & Maschke, B. A structured control model for the thermo-magneto-hydrodynamics of plasmas in tokamaks. Mathematical and Computer Modelling of Dynamical Systems vol. 22 181–206 (2016) – 10.1080/13873954.2016.1154874
- Zhou, W., Wu, Y., Hu, H., Li, Y. & Wang, Y. Port-Hamiltonian Modeling and IDA-PBC Control of an IPMC-Actuated Flexible Beam. Actuators vol. 10 236 (2021) – 10.3390/act10090236
- Borja, P., Scherpen, J. M. A. & Fujimoto, K. Extended Balancing of Continuous LTI Systems: A Structure-Preserving Approach. IEEE Transactions on Automatic Control vol. 68 257–271 (2023) – 10.1109/tac.2021.3138645
- Breiten, T., Morandin, R. & Schulze, P. Error bounds for port-Hamiltonian model and controller reduction based on system balancing. Computers & Mathematics with Applications vol. 116 100–115 (2022) – 10.1016/j.camwa.2021.07.022
- Hartmann, C., Vulcanov, V.-M. & Schütte, C. Balanced Truncation of Linear Second-Order Systems: A Hamiltonian Approach. Multiscale Modeling & Simulation vol. 8 1348–1367 (2010) – 10.1137/080732717
- Polyuga, R. V. & van der Schaft, A. J. Effort- and flow-constraint reduction methods for structure preserving model reduction of port-Hamiltonian systems. Systems & Control Letters vol. 61 412–421 (2012) – 10.1016/j.sysconle.2011.12.008
- Egger, H., Kugler, T., Liljegren-Sailer, B., Marheineke, N. & Mehrmann, V. On Structure-Preserving Model Reduction for Damped Wave Propagation in Transport Networks. SIAM Journal on Scientific Computing vol. 40 A331–A365 (2018) – 10.1137/17m1125303
- Giftthaler, M., Wolf, T., Panzer, H. K. F. & Lohmann, B. Parametric Model Order Reduction of Port-Hamiltonian Systems by Matrix Interpolation. at - Automatisierungstechnik vol. 62 619–628 (2014) – 10.1515/auto-2013-1072
- Gugercin, S., Polyuga, R. V., Beattie, C. & van der Schaft, A. Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems. Automatica vol. 48 1963–1974 (2012) – 10.1016/j.automatica.2012.05.052
- Ionescu, T. C. & Astolfi, A. Families of moment matching based, structure preserving approximations for linear port Hamiltonian systems. Automatica vol. 49 2424–2434 (2013) – 10.1016/j.automatica.2013.05.006
- Wolf, T., Lohmann, B., Eid, R. & Kotyczka, P. Passivity and Structure Preserving Order Reduction of Linear Port-Hamiltonian Systems Using Krylov Subspaces. European Journal of Control vol. 16 401–406 (2010) – 10.3166/ejc.16.401-406
- Sato, K. Riemannian optimal model reduction of linear port-Hamiltonian systems. Automatica vol. 93 428–434 (2018) – 10.1016/j.automatica.2018.03.051
- Schwerdtner, P. & Voigt, M. Adaptive Sampling for Structure-Preserving Model Order Reduction of Port-Hamiltonian Systems. IFAC-PapersOnLine vol. 54 143–148 (2021) – 10.1016/j.ifacol.2021.11.069
- Chaturantabut, S., Beattie, C. & Gugercin, S. Structure-Preserving Model Reduction for Nonlinear Port-Hamiltonian Systems. SIAM Journal on Scientific Computing vol. 38 B837–B865 (2016) – 10.1137/15m1055085
- Gugercin, S., Antoulas, A. C. & Beattie, C. $\mathcal{H}_2$ Model Reduction for Large-Scale Linear Dynamical Systems. SIAM Journal on Matrix Analysis and Applications vol. 30 609–638 (2008) – 10.1137/060666123
- Chaturantabut, S. & Sorensen, D. C. Nonlinear Model Reduction via Discrete Empirical Interpolation. SIAM Journal on Scientific Computing vol. 32 2737–2764 (2010) – 10.1137/090766498
- Black, F., Schulze, P. & Unger, B. Efficient Wildland Fire Simulation via Nonlinear Model Order Reduction. Fluids vol. 6 280 (2021) – 10.3390/fluids6080280
- Mandel, J. et al. A wildland fire model with data assimilation. Mathematics and Computers in Simulation vol. 79 584–606 (2008) – 10.1016/j.matcom.2008.03.015
- Mehrmann, Structure-preserving discretization for port-Hamiltonian descriptor systems. Proceedings of the 58th IEEE Conference on Decision and Control (2019)
- Beattie, C., Gugercin, S. & Mehrmann, V. Structure-Preserving Interpolatory Model Reduction for Port-Hamiltonian Differential-Algebraic Systems. Realization and Model Reduction of Dynamical Systems 235–254 (2022) doi:10.1007/978-3-030-95157-3_13 – 10.1007/978-3-030-95157-3_13
- Hauschild, S.-A., Marheineke, N. & Mehrmann, V. Model reduction techniques for port‐Hamiltonian differential‐algebraic systems. PAMM vol. 19 (2019) – 10.1002/pamm.201900040
- Kunkel, P. & Mehrmann, V. Differential-Algebraic Equations. EMS Textbooks in Mathematics (2006) doi:10.4171/017 – 10.4171/017
- Khalil, Nonlinear Systems (2002)
- Rashad, R., Califano, F., van der Schaft, A. J. & Stramigioli, S. Twenty years of distributed port-Hamiltonian systems: a literature review. IMA Journal of Mathematical Control and Information vol. 37 1400–1422 (2020) – 10.1093/imamci/dnaa018
- van der Schaft, A. L2-Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer International Publishing, 2017). doi:10.1007/978-3-319-49992-5 – 10.1007/978-3-319-49992-5
- Byrnes, C. I., Isidori, A. & Willems, J. C. Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems. IEEE Transactions on Automatic Control vol. 36 1228–1240 (1991) – 10.1109/9.100932
- Vidyasagar, Nonlinear Systems Analysis (1993)
- Carlberg, K., Barone, M. & Antil, H. Galerkin v. least-squares Petrov–Galerkin projection in nonlinear model reduction. Journal of Computational Physics vol. 330 693–734 (2017) – 10.1016/j.jcp.2016.10.033
- Bernstein, D. S. Matrix Mathematics. (2009) doi:10.1515/9781400833344 – 10.1515/9781400833344
- Benner, P. & Breiten, T. Chapter 6: Model Order Reduction Based on System Balancing. Model Reduction and Approximation 261–295 (2017) doi:10.1137/1.9781611974829.ch6 – 10.1137/1.9781611974829.ch6
- Moore, B. Principal component analysis in linear systems: Controllability, observability, and model reduction. IEEE Transactions on Automatic Control vol. 26 17–32 (1981) – 10.1109/tac.1981.1102568
- Antoulas, A. C., Beattie, C. A. & Güğercin, S. Interpolatory Methods for Model Reduction. (Society for Industrial and Applied Mathematics, 2020). doi:10.1137/1.9781611976083 – 10.1137/1.9781611976083
- Benner, P. & Feng, L. 3 Model order reduction based on moment-matching. System- and Data-Driven Methods and Algorithms 57–96 (2021) doi:10.1515/9783110498967-003 – 10.1515/9783110498967-003
- Berkooz, G., Holmes, P. & Lumley, J. L. The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows. Annual Review of Fluid Mechanics vol. 25 539–575 (1993) – 10.1146/annurev.fl.25.010193.002543
- Gubisch, M. & Volkwein, S. Chapter 1: Proper Orthogonal Decomposition for Linear-Quadratic Optimal Control. Model Reduction and Approximation 3–63 (2017) doi:10.1137/1.9781611974829.ch1 – 10.1137/1.9781611974829.ch1
- Gu, Model reduction via projection onto nonlinear manifolds, with applications to analog circuits and biochemical systems. IEEE/ACM International Conference on Computer Aided Design (ICCAD) (2008)
- Kramer, B. & Willcox, K. E. Nonlinear Model Order Reduction via Lifting Transformations and Proper Orthogonal Decomposition. AIAA Journal vol. 57 2297–2307 (2019) – 10.2514/1.j057791
- Alla, A. & Kutz, J. N. Nonlinear Model Order Reduction via Dynamic Mode Decomposition. SIAM Journal on Scientific Computing vol. 39 B778–B796 (2017) – 10.1137/16m1059308
- Astrid, P., Weiland, S., Willcox, K. & Backx, T. Missing Point Estimation in Models Described by Proper Orthogonal Decomposition. IEEE Transactions on Automatic Control vol. 53 2237–2251 (2008) – 10.1109/tac.2008.2006102
- Barrault, M., Maday, Y., Nguyen, N. C. & Patera, A. T. An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations. Comptes Rendus. Mathématique vol. 339 667–672 (2004) – 10.1016/j.crma.2004.08.006
- Carlberg, K., Bou‐Mosleh, C. & Farhat, C. Efficient non‐linear model reduction via a least‐squares Petrov–Galerkin projection and compressive tensor approximations. International Journal for Numerical Methods in Engineering vol. 86 155–181 (2010) – 10.1002/nme.3050
- Farhat, C., Avery, P., Chapman, T. & Cortial, J. Dimensional reduction of nonlinear finite element dynamic models with finite rotations and energy‐based mesh sampling and weighting for computational efficiency. International Journal for Numerical Methods in Engineering vol. 98 625–662 (2014) – 10.1002/nme.4668
- Schulze, Structure-preserving model reduction for port-Hamiltonian systems based on a special class of nonlinear approximation ansatzes. arXiv [preprint]: (2023)
- Golub, G. & Pereyra, V. Separable nonlinear least squares: the variable projection method and its applications. Inverse Problems vol. 19 R1–R26 (2003) – 10.1088/0266-5611/19/2/201
- Anderson, W. & Farazmand, M. Evolution of Nonlinear Reduced-Order Solutions for PDEs with Conserved Quantities. SIAM Journal on Scientific Computing vol. 44 A176–A197 (2022) – 10.1137/21m1415972
- Anderson, W. & Farazmand, M. Shape-morphing reduced-order models for nonlinear Schrödinger equations. Nonlinear Dynamics vol. 108 2889–2902 (2022) – 10.1007/s11071-022-07448-w
- Rim, D., Peherstorfer, B. & Mandli, K. T. Manifold Approximations via Transported Subspaces: Model Reduction for Transport-Dominated Problems. SIAM Journal on Scientific Computing vol. 45 A170–A199 (2023) – 10.1137/20m1316998
- Rowley, C. W. & Marsden, J. E. Reconstruction equations and the Karhunen–Loève expansion for systems with symmetry. Physica D: Nonlinear Phenomena vol. 142 1–19 (2000) – 10.1016/s0167-2789(00)00042-7
- Glavaski, Model reduction, centering, and the Karhunen-Loeve expansion. Proceedings of the 37th IEEE Conference on Decision and Control (1998)
- Agud Albesa, L., Boix García, M., Pla Ferrando, M. L. & Cardona Navarrete, S. C. A study about the solution of convection–diffusion–reaction equation with Danckwerts boundary conditions by analytical, method of lines and Crank–Nicholson techniques. Mathematical Methods in the Applied Sciences vol. 46 2133–2164 (2022) – 10.1002/mma.8633
- Danckwerts, P. V. Continuous flow systems. Chemical Engineering Science vol. 2 1–13 (1953) – 10.1016/0009-2509(53)80001-1
- Schulze, P., Reiss, J. & Mehrmann, V. Model Reduction for a Pulsed Detonation Combuster via Shifted Proper Orthogonal Decomposition. Notes on Numerical Fluid Mechanics and Multidisciplinary Design 271–286 (2018) doi:10.1007/978-3-319-98177-2_17 – 10.1007/978-3-319-98177-2_17
- Kotyczka, P. & Lefèvre, L. Discrete-time port-Hamiltonian systems: A definition based on symplectic integration. Systems & Control Letters vol. 133 104530 (2019) – 10.1016/j.sysconle.2019.104530