Structure-Preserving Interpolatory Model Reduction for Port-Hamiltonian Differential-Algebraic Systems
Authors
Christopher Beattie, Serkan Gugercin, Volker Mehrmann
Abstract
We examine interpolatory model reduction methods that are particularly well-suited for treating large-scale port-Hamiltonian differential-algebraic systems. We are able to take advantage of underlying structural features of the system in a way that preserves them in the reduced model, using approaches that incorporate regularization and a prudent selection of interpolation data. We focus on linear time-invariant systems and present a systematic treatment of a variety of model classes that include combinations of index-1 and index-2 systems, describing in particular how constraints may be represented in the transfer function so that the polynomial part can be preserved with interpolatory methods. We propose an algorithm to generate effective interpolatory models and illustrate its effectiveness on a numerical example.
Keywords
Port-Hamiltonian descriptor system; Model reduction; Tangential interpolation; Regularization of descriptor system; Staircase form
Citation
- ISBN: 9783030951566
- Publisher: Springer International Publishing
- DOI: 10.1007/978-3-030-95157-3_13
BibTeX
@inbook{Beattie_2022,
title={{Structure-Preserving Interpolatory Model Reduction for Port-Hamiltonian Differential-Algebraic Systems}},
ISBN={9783030951573},
DOI={10.1007/978-3-030-95157-3_13},
booktitle={{Realization and Model Reduction of Dynamical Systems}},
publisher={Springer International Publishing},
author={Beattie, Christopher and Gugercin, Serkan and Mehrmann, Volker},
year={2022},
pages={235--254}
}
References
- Antoulas, A. C., Beattie, C. A. & Güğercin, S. Interpolatory Methods for Model Reduction. (Society for Industrial and Applied Mathematics, 2020). doi:10.1137/1.9781611976083 – 10.1137/1.9781611976083
- Beattie, C. & Gugercin, S. Interpolatory projection methods for structure-preserving model reduction. Systems & Control Letters vol. 58 225–232 (2009) – 10.1016/j.sysconle.2008.10.016
- Beattie, C. & Gugercin, S. Structure-preserving model reduction for nonlinear port-Hamiltonian systems. IEEE Conference on Decision and Control and European Control Conference 6564–6569 (2011) doi:10.1109/cdc.2011.6161504 – 10.1109/cdc.2011.6161504
- Beattie, C. & Gugercin, S. Chapter 7: Model Reduction by Rational Interpolation. Model Reduction and Approximation 297–334 (2017) doi:10.1137/1.9781611974829.ch7 – 10.1137/1.9781611974829.ch7
- Beattie, C., Mehrmann, V., Xu, H. & Zwart, H. Linear port-Hamiltonian descriptor systems. Mathematics of Control, Signals, and Systems vol. 30 (2018) – 10.1007/s00498-018-0223-3
- Bunse-Gerstner, A., Byers, R., Mehrmann, V. & Nichols, N. K. Feedback design for regularizing descriptor systems. Linear Algebra and its Applications vol. 299 119–151 (1999) – 10.1016/s0024-3795(99)00167-6
- Campbell, S. L., Kunkel, P. & Mehrmann, V. Chapter 2: Regularization of Linear and Nonlinear Descriptor Systems. Control and Optimization with Differential-Algebraic Constraints 17–36 (2012) doi:10.1137/9781611972252.ch2 – 10.1137/9781611972252.ch2
- Chaturantabut, S., Beattie, C. & Gugercin, S. Structure-Preserving Model Reduction for Nonlinear Port-Hamiltonian Systems. SIAM Journal on Scientific Computing vol. 38 B837–B865 (2016) – 10.1137/15m1055085
- Singular Control Systems. Lecture Notes in Control and Information Sciences (Springer-Verlag, 1989). doi:10.1007/bfb0002475 – 10.1007/bfb0002475
- Egger, H., Kugler, T., Liljegren-Sailer, B., Marheineke, N. & Mehrmann, V. On Structure-Preserving Model Reduction for Damped Wave Propagation in Transport Networks. SIAM Journal on Scientific Computing vol. 40 A331–A365 (2018) – 10.1137/17m1125303
- Gallivan, K., Vandendorpe, A. & Van Dooren, P. Model Reduction of MIMO Systems via Tangential Interpolation. SIAM Journal on Matrix Analysis and Applications vol. 26 328–349 (2004) – 10.1137/s0895479803423925
- FR Gantmacher, The Theory of Matrices (1959)
- Gugercin, S., Antoulas, A. C. & Beattie, C. $\mathcal{H}_2$ Model Reduction for Large-Scale Linear Dynamical Systems. SIAM Journal on Matrix Analysis and Applications vol. 30 609–638 (2008) – 10.1137/060666123
- Gugercin, S., Polyuga, R. V., Beattie, C. A. & van der Schaft, A. J. Interpolation-based ℌ<inf>2</inf> model reduction for port-Hamiltonian systems. Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference 5362–5369 (2009) doi:10.1109/cdc.2009.5400626 – 10.1109/cdc.2009.5400626
- Gugercin, S., Polyuga, R. V., Beattie, C. & van der Schaft, A. Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems. Automatica vol. 48 1963–1974 (2012) – 10.1016/j.automatica.2012.05.052
- Gugercin, S., Stykel, T. & Wyatt, S. Model Reduction of Descriptor Systems by Interpolatory Projection Methods. SIAM Journal on Scientific Computing vol. 35 B1010–B1033 (2013) – 10.1137/130906635
- Hauschild, S.-A., Marheineke, N. & Mehrmann, V. Model reduction techniques for port‐Hamiltonian differential‐algebraic systems. PAMM vol. 19 (2019) – 10.1002/pamm.201900040
- Heinkenschloss, M., Sorensen, D. C. & Sun, K. Balanced Truncation Model Reduction for a Class of Descriptor Systems with Application to the Oseen Equations. SIAM Journal on Scientific Computing vol. 30 1038–1063 (2008) – 10.1137/070681910
- Kunkel, P. & Mehrmann, V. Differential-Algebraic Equations. EMS Textbooks in Mathematics (2006) doi:10.4171/017 – 10.4171/017
- Mayo, A. J. & Antoulas, A. C. A framework for the solution of the generalized realization problem. Linear Algebra and its Applications vol. 425 634–662 (2007) – 10.1016/j.laa.2007.03.008
- Mehl, C., Mehrmann, V. & Wojtylak, M. Linear Algebra Properties of Dissipative Hamiltonian Descriptor Systems. SIAM Journal on Matrix Analysis and Applications vol. 39 1489–1519 (2018) – 10.1137/18m1164275
- Mehrmann, V. & Morandin, R. Structure-preserving discretization for port-Hamiltonian descriptor systems. 2019 IEEE 58th Conference on Decision and Control (CDC) 6863–6868 (2019) doi:10.1109/cdc40024.2019.9030180 – 10.1109/cdc40024.2019.9030180
- Mehrmann, V. & Stykel, T. Balanced Truncation Model Reduction for Large-Scale Systems in Descriptor Form. Lecture Notes in Computational Science and Engineering 83–115 doi:10.1007/3-540-27909-1_3 – 10.1007/3-540-27909-1_3
- Polyuga, R. V. & van der Schaft, A. Structure Preserving Moment Matching for Port-Hamiltonian Systems: Arnoldi and Lanczos. IEEE Transactions on Automatic Control vol. 56 1458–1462 (2011) – 10.1109/tac.2011.2128650
- Polyuga, R. V. & van der Schaft, A. J. Effort- and flow-constraint reduction methods for structure preserving model reduction of port-Hamiltonian systems. Systems & Control Letters vol. 61 412–421 (2012) – 10.1016/j.sysconle.2011.12.008
- Polyuga, R. V. & van der Schaft, A. Structure preserving model reduction of port-Hamiltonian systems by moment matching at infinity. Automatica vol. 46 665–672 (2010) – 10.1016/j.automatica.2010.01.018
- Stykel, T. Balanced truncation model reduction for semidiscretized Stokes equation. Linear Algebra and its Applications vol. 415 262–289 (2006) – 10.1016/j.laa.2004.01.015
- van der Schaft, A. J. Port-Hamiltonian Differential-Algebraic Systems. Surveys in Differential-Algebraic Equations I 173–226 (2013) doi:10.1007/978-3-642-34928-7_5 – 10.1007/978-3-642-34928-7_5
- Wolf, T., Lohmann, B., Eid, R. & Kotyczka, P. Passivity and Structure Preserving Order Reduction of Linear Port-Hamiltonian Systems Using Krylov Subspaces. European Journal of Control vol. 16 401–406 (2010) – 10.3166/ejc.16.401-406