Authors

Thomas Wolf, Boris Lohmann, Rudy Eid, Paul Kotyczka

Abstract

In this paper, a new structure-preserving scheme for the reduction of linear port-Hamiltonian systems with dissipation using Krylov subspaces is presented. It is shown how to choose the projection matrices in order to guarantee the moment matching property and to obtain a passive and thus stable reduced-order model in port-Hamiltonian form. The method is suitable for the reduction of largescale systems as it employs only the well-known Arnoldi algorithm and matrix-vector multiplications to compute the reduced-order model. Afinite element model is reduced to illustrate the new method.

Keywords

Order reduction; Port-Hamiltonian systems; Structure preserving; Moment matching

Citation

  • Journal: European Journal of Control
  • Year: 2010
  • Volume: 16
  • Issue: 4
  • Pages: 401–406
  • Publisher: Elsevier BV
  • DOI: 10.3166/ejc.16.401-406

BibTeX

@article{Wolf_2010,
  title={{Passivity and Structure Preserving Order Reduction of Linear Port-Hamiltonian Systems Using Krylov Subspaces}},
  volume={16},
  ISSN={0947-3580},
  DOI={10.3166/ejc.16.401-406},
  number={4},
  journal={European Journal of Control},
  publisher={Elsevier BV},
  author={Wolf, Thomas and Lohmann, Boris and Eid, Rudy and Kotyczka, Paul},
  year={2010},
  pages={401--406}
}

Download the bib file

References

  • Antoulas, Approximation of Large-Scale Dynamical Systems. SIAM Philadelphia (2005)
  • Antoulas, A. C. A new result on passivity preserving model reduction. Systems & Control Letters vol. 54 361–374 (2005) – 10.1016/j.sysconle.2004.07.007
  • Arnoldi, W. E. The principle of minimized iterations in the solution of the matrix eigenvalue problem. Quarterly of Applied Mathematics vol. 9 17–29 (1951) – 10.1090/qam/42792
  • Bai, Stable and Passive Reduced-Order Models Based on Partial Padé Approximation via the Lanczos Process. Numerical Analysis Manuscript 97/3-10 (1997)
  • Eid, How to choose a single expansion point in Krylov-based model reduction?. Technical reports on automatic control (2009)
  • Freund, Passive reduced-order modeling via Krylovsubspace methods. Numerical Analysis Manuscripts (2000)
  • Freund, R. W. Model reduction methods based on Krylov subspaces. Acta Numerica vol. 12 267–319 (2003) – 10.1017/s0962492902000120
  • Bond-graph modeling. IEEE Control Systems vol. 27 24–45 (2007) – 10.1109/mcs.2007.338279
  • Grimme, E. J., Sorensen, D. C. & Van Dooren, P. Model reduction of state space systems via an implicitly restarted Lanczos method. Numerical Algorithms vol. 12 1–31 (1996) – 10.1007/bf02141739
  • Grimme, Krylov Projection Methods for Model Reduction. PhD thesis, Department of Electrical Engineering. University of Illinois at Urbana Champaign (1997)
  • Gugercin, S., Antoulas, A. C. & Beattie, C. $\mathcal{H}_2$ Model Reduction for Large-Scale Linear Dynamical Systems. SIAM Journal on Matrix Analysis and Applications vol. 30 609–638 (2008) – 10.1137/060666123
  • Gugercin, Interpolation-based h2 model reduction for port-hamiltonian systems. In Proceedings of 48th CDC/CCC (2009)
  • Ionutiu, R., Rommes, J. & Antoulas, A. C. Passivity-Preserving Model Reduction Using Dominant Spectral-Zero Interpolation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems vol. 27 2250–2263 (2008) – 10.1109/tcad.2008.2006160
  • Jaimoukha, I. M. & Kasenally, E. M. Oblique Production Methods for Large Scale Model Reduction. SIAM Journal on Matrix Analysis and Applications vol. 16 602–627 (1995) – 10.1137/s0895479893250740
  • Jaimoukha, I. M. & Kasenally, E. M. Implicitly Restarted Krylov Subspace Methods for Stable Partial Realizations. SIAM Journal on Matrix Analysis and Applications vol. 18 633–652 (1997) – 10.1137/s0895479895279873
  • Kerns, K. J. & Yang, A. T. Preservation of passivity during RLC network reduction via split congruence transformations. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems vol. 17 582–591 (1998) – 10.1109/43.709396
  • Lohmann, Passivity preserving order reduction of linear port-Hamiltonian systems by moment matching. (2009)
  • Lopezlena, Energystorage balanced reduction of port-Hamiltonian systems. In Proceedings of IFAC workshop of Lagrangian and Hamiltonian Methods for Nonlinear Control (2003)
  • Odabasioglu, A., Celik, M. & Pileggi, L. T. PRIMA: passive reduced-order interconnect macromodeling algorithm. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems vol. 17 645–654 (1998) – 10.1109/43.712097
  • Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
  • Polyuga, Moment matching for linear porthamiltonian systems (2009)
  • Prajna, S., van der Schaft, A. & Meinsma, G. An LMI approach to stabilization of linear port-controlled Hamiltonian systems. Systems & Control Letters vol. 45 371–385 (2002) – 10.1016/s0167-6911(01)00195-5
  • van der Schaft, (2000)
  • Sorensen, D. C. Passivity preserving model reduction via interpolation of spectral zeros. Systems & Control Letters vol. 54 347–360 (2005) – 10.1016/j.sysconle.2004.07.006
  • Zienkiewicz, (2005)