Authors

S. Fiaz, D. Zonetti, R. Ortega, J.M.A. Scherpen, A.J. van der Schaft

Abstract

In this paper we present a systematic framework for modeling of power networks. The basic idea is to view the complete power network as a port-Hamiltonian system on a graph where edges correspond to components of the power network and nodes are buses. The interconnection constraints are given by the graph incidence matrix which captures the interconnection structure of the network. As a special case we focus on the system obtained by interconnecting a synchronous generator with a resistive load. We use Park’s state transformation to decouple the dynamics of the state variables from the dynamics of the rotor angle, resulting in a quotient system admitting equilibria. We analyze the stability of the quotient system when it is given constant input mechanical torque and electrical excitation.

Keywords

Power networks; Modeling; Port-Hamiltonian systems; Stability analysis

Citation

  • Journal: European Journal of Control
  • Year: 2013
  • Volume: 19
  • Issue: 6
  • Pages: 477–485
  • Publisher: Elsevier BV
  • DOI: 10.1016/j.ejcon.2013.09.002
  • Note: Lagrangian and Hamiltonian Methods for Modelling and Control

BibTeX

@article{Fiaz_2013,
  title={{A port-Hamiltonian approach to power network modeling and analysis}},
  volume={19},
  ISSN={0947-3580},
  DOI={10.1016/j.ejcon.2013.09.002},
  number={6},
  journal={European Journal of Control},
  publisher={Elsevier BV},
  author={Fiaz, S. and Zonetti, D. and Ortega, R. and Scherpen, J.M.A. and van der Schaft, A.J.},
  year={2013},
  pages={477--485}
}

Download the bib file

References

  • Bergen, A. R. & Hill, D. J. A Structure Preserving Model for Power System Stability Analysis. IEEE Transactions on Power Apparatus and Systems vol. PAS-100 25–35 (1981) – 10.1109/tpas.1981.316883
  • Bretas, N. G. & Alberto, L. F. C. Lyapunov function for power systems with transfer conductances: extension of the invariance principle. IEEE Transactions on Power Systems vol. 18 769–777 (2003) – 10.1109/tpwrs.2003.811207
  • Bollobas, (1998)
  • Casagrande, D., Astolfi, A., Ortega, R. & Langarica, D. A solution to the problem of transient stability of multimachine power systems. 2012 IEEE 51st IEEE Conference on Decision and Control (CDC) 1703–1708 (2012) doi:10.1109/cdc.2012.6426696 – 10.1109/cdc.2012.6426696
  • Chiang, H.-D. Study of the existence of energy functions for power systems with losses. IEEE Transactions on Circuits and Systems vol. 36 1423–1429 (1989) – 10.1109/31.41298
  • Dib, W., Ortega, R., Barabanov, A. & Lamnabhi-Lagarrigue, F. A “Globally” Convergent Controller for Multi-Machine Power Systems Using Structure-Preserving Models. IEEE Transactions on Automatic Control vol. 54 2179–2185 (2009) – 10.1109/tac.2009.2026834
  • Dörfler, F. & Bullo, F. Synchronization and Transient Stability in Power Networks and Nonuniform Kuramoto Oscillators. SIAM Journal on Control and Optimization vol. 50 1616–1642 (2012) – 10.1137/110851584
  • Hao, J., Chen, C., Shi, L. & Wang, J. Nonlinear Decentralized Disturbance Attenuation Excitation Control for Power Systems With Nonlinear Loads Based on the Hamiltonian Theory. IEEE Transactions on Energy Conversion vol. 22 316–324 (2007) – 10.1109/tec.2005.859977
  • Henner, V. Comments on ‘On Lyanupov functions for power systems with transfer conductances’. IEEE Transactions on Automatic Control vol. 19 621–622 (1974) – 10.1109/tac.1974.1100688
  • Hiskens, I. A. & Hill, D. J. Energy functions, transient stability and voltage behaviour in power systems with nonlinear loads. IEEE Transactions on Power Systems vol. 4 1525–1533 (1989) – 10.1109/59.41705
  • Kundur, (1993)
  • Kwatny, H., Bahar, L. & Pasrija, A. Energy-like Lyapunov functions for power system stability analysis. IEEE Transactions on Circuits and Systems vol. 32 1140–1149 (1985) – 10.1109/tcs.1985.1085650
  • Maschke, B., Ortega, R. & Van Der Schaft, A. J. Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation. IEEE Transactions on Automatic Control vol. 45 1498–1502 (2000) – 10.1109/9.871758
  • Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
  • Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002)10.1016/s0005-1098(01)00278-3
  • Transient stabilization of multimachine power systems with nontrivial transfer conductances. IEEE Transactions on Automatic Control vol. 50 60–75 (2005) – 10.1109/tac.2004.840477
  • Pai, (1989)
  • Pai, M. & Murthy, P. On Lyapunov functions for power systems with transfer conductances. IEEE Transactions on Automatic Control vol. 18 181–183 (1973) – 10.1109/tac.1973.1100255
  • Tsolas, N., Arapostathis, A. & Varaiya, P. A structure preserving energy function for power system transient stability analysis. IEEE Transactions on Circuits and Systems vol. 32 1041–1049 (1985) – 10.1109/tcs.1985.1085625
  • van der Schaft, A. Characterization and partial synthesis of the behavior of resistive circuits at their terminals. Systems & Control Letters vol. 59 423–428 (2010) – 10.1016/j.sysconle.2010.05.005
  • Varaiya, P., Wu, F. F. & Rong-Liang Chen. Direct methods for transient stability analysis of power systems: Recent results. Proceedings of the IEEE vol. 73 1703–1715 (1985) – 10.1109/proc.1985.13366
  • Woods, (1996)