Effort- and flow-constraint reduction methods for structure preserving model reduction of port-Hamiltonian systems
Authors
Rostyslav V. Polyuga, Arjan J. van der Schaft
Abstract
The geometric formulation of general port-Hamiltonian systems is used in order to obtain two structure preserving reduction methods. The main idea is to construct a reduced-order Dirac structure corresponding to zero power flow in some of the energy-storage ports. This can be performed in two canonical ways, called the effort- and the flow-constraint methods. We show how the effort-constraint method can be regarded as a projection-based model reduction method. Both the effort- and flow-constraint reduction methods preserve the stability and passivity properties of the original system, as a consequence of preserving the port-Hamiltonian structure.
Keywords
Port-Hamiltonian systems; Structure preserving model reduction; Dirac structure; Effort-constraint method; Flow-constraint method
Citation
- Journal: Systems & Control Letters
- Year: 2012
- Volume: 61
- Issue: 3
- Pages: 412–421
- Publisher: Elsevier BV
- DOI: 10.1016/j.sysconle.2011.12.008
BibTeX
@article{Polyuga_2012,
title={{Effort- and flow-constraint reduction methods for structure preserving model reduction of port-Hamiltonian systems}},
volume={61},
ISSN={0167-6911},
DOI={10.1016/j.sysconle.2011.12.008},
number={3},
journal={Systems & Control Letters},
publisher={Elsevier BV},
author={Polyuga, Rostyslav V. and van der Schaft, Arjan J.},
year={2012},
pages={412--421}
}
References
- van der Schaft, The Hamiltonian formulation of energy conserving physical systems with external ports. Archiv für Elektronik und Übertragungstechnik (1995)
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM Journal on Control and Optimization vol. 37 54–91 (1998) – 10.1137/s0363012996312039
- van der Schaft, (1996)
- van der Schaft, Port-controlled Hamiltonian systems: towards a theory for control and design of nonlinear physical systems. Journal of the Society of Instrument and Control Engineers of Japan (SICE) (2000)
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- The Geoplex Consortium. (2009)
- Polyuga, Structure preserving port-Hamiltonian model reduction of electrical circuits. (2011)
- Hartmann, C., Vulcanov, V.-M. & Schütte, C. Balanced Truncation of Linear Second-Order Systems: A Hamiltonian Approach. Multiscale Modeling & Simulation vol. 8 1348–1367 (2010) – 10.1137/080732717
- Polyuga, R. V. & van der Schaft, A. Structure preserving model reduction of port-Hamiltonian systems by moment matching at infinity. Automatica vol. 46 665–672 (2010) – 10.1016/j.automatica.2010.01.018
- Gugercin, S., Polyuga, R. V., Beattie, C. A. & van der Schaft, A. J. Interpolation-based ℌ<inf>2</inf> model reduction for port-Hamiltonian systems. Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference 5362–5369 (2009) doi:10.1109/cdc.2009.5400626 – 10.1109/cdc.2009.5400626
- Polyuga, R. V. & van der Schaft, A. Structure Preserving Moment Matching for Port-Hamiltonian Systems: Arnoldi and Lanczos. IEEE Transactions on Automatic Control vol. 56 1458–1462 (2011) – 10.1109/tac.2011.2128650
- Wolf, T., Lohmann, B., Eid, R. & Kotyczka, P. Passivity and Structure Preserving Order Reduction of Linear Port-Hamiltonian Systems Using Krylov Subspaces. European Journal of Control vol. 16 401–406 (2010) – 10.3166/ejc.16.401-406
- Polyuga, R. V. Discussion on: “Passivity and Structure Preserving Order Reduction of Linear Port-Hamiltonian Systems Using Krylov Subspaces”. European Journal of Control vol. 16 407–409 (2010) – 10.1016/s0947-3580(10)70672-5
- FUJIMOTO, K. Balanced Realization and Model Order Reduction for Port-Hamiltonian Systems. Journal of System Design and Dynamics vol. 2 694–702 (2008) – 10.1299/jsdd.2.694
- Scherpen, J. M. A. & van der Schaft, A. J. A structure preserving minimal representation of a nonlinear port-Hamiltonian system. 2008 47th IEEE Conference on Decision and Control 4885–4890 (2008) doi:10.1109/cdc.2008.4739266 – 10.1109/cdc.2008.4739266
- Fujimoto, K. & Scherpen, J. M. A. Balanced Realization and Model Order Reduction for Nonlinear Systems Based on Singular Value Analysis. SIAM Journal on Control and Optimization vol. 48 4591–4623 (2010) – 10.1137/070695332
- Astolfi, A. Model Reduction by Moment Matching for Linear and Nonlinear Systems. IEEE Transactions on Automatic Control vol. 55 2321–2336 (2010) – 10.1109/tac.2010.2046044
- Antoulas, (2005)
- Schilders, (2008)
- Benner, (2011)
- van der Schaft, A. J. & Polyuga, R. V. Structure-preserving model reduction of complex physical systems. Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference 4322–4327 (2009) doi:10.1109/cdc.2009.5399669 – 10.1109/cdc.2009.5399669
- Courant, T. J. Dirac manifolds. Transactions of the American Mathematical Society vol. 319 631–661 (1990) – 10.2307/2001258
- Fernando, K. & Nicholson, H. Singular perturbational model reduction of balanced systems. IEEE Transactions on Automatic Control vol. 27 466–468 (1982) – 10.1109/tac.1982.1102932
- Green, (1995)
- Cervera, J., van der Schaft, A. J. & Baños, A. Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica vol. 43 212–225 (2007) – 10.1016/j.automatica.2006.08.014