Families of moment matching based, structure preserving approximations for linear port Hamiltonian systems
Authors
Tudor C. Ionescu, Alessandro Astolfi
Abstract
In this paper we propose a solution to the problem of moment matching with preservation of the port Hamiltonian structure, in the framework of time-domain moment matching. We characterize several families of parameterized port Hamiltonian models that match the moments of a given port Hamiltonian system, at a set of finite interpolation points. We also discuss the problem of Markov parameters matching for linear systems as a moment matching problem for descriptor representations associated with the given system, at zero interpolation points. Solving this problem yields families of parameterized reduced order models that achieve Markov parameter matching. Finally, we apply these results to the port Hamiltonian case, resulting in families of parameterized reduced order port Hamiltonian approximations.
Keywords
Model approximation; Model reduction; Physical models; Markov parameters; System order reduction
Citation
- Journal: Automatica
- Year: 2013
- Volume: 49
- Issue: 8
- Pages: 2424–2434
- Publisher: Elsevier BV
- DOI: 10.1016/j.automatica.2013.05.006
BibTeX
@article{Ionescu_2013,
title={{Families of moment matching based, structure preserving approximations for linear port Hamiltonian systems}},
volume={49},
ISSN={0005-1098},
DOI={10.1016/j.automatica.2013.05.006},
number={8},
journal={Automatica},
publisher={Elsevier BV},
author={Ionescu, Tudor C. and Astolfi, Alessandro},
year={2013},
pages={2424--2434}
}
References
- Anderson, (2003)
- Antoulas, (2005)
- Antoulas, (1999)
- Astolfi, A. Model Reduction by Moment Matching for Linear and Nonlinear Systems. IEEE Transactions on Automatic Control vol. 55 2321–2336 (2010) – 10.1109/tac.2010.2046044
- Astolfi, A. Model reduction by moment matching, steady-state response and projections. 49th IEEE Conference on Decision and Control (CDC) (2010) doi:10.1109/cdc.2010.5717725 – 10.1109/cdc.2010.5717725
- Byrnes, C. I. & Lindquist, A. Important Moments in Systems and Control. SIAM Journal on Control and Optimization vol. 47 2458–2469 (2008) – 10.1137/070693941
- Campbell, (1980)
- Chu, K. E. The solution of the matrix equations AXB−CXD=E AND (YA−DZ,YC−BZ)=(E,F). Linear Algebra and its Applications vol. 93 93–105 (1987) – 10.1016/s0024-3795(87)90314-4
- de Souza, E. & Bhattacharyya, S. P. Controllability, observability and the solution of AX - XB = C. Linear Algebra and its Applications vol. 39 167–188 (1981) – 10.1016/0024-3795(81)90301-3
- Feldmann, P. & Freund, R. W. Efficient linear circuit analysis by Pade approximation via the Lanczos process. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems vol. 14 639–649 (1995) – 10.1109/43.384428
- Gallivan, K., Vandendorpe, A. & Van Dooren, P. Model Reduction of MIMO Systems via Tangential Interpolation. SIAM Journal on Matrix Analysis and Applications vol. 26 328–349 (2004) – 10.1137/s0895479803423925
- Gugercin, S., Polyuga, R. V., Beattie, C. & van der Schaft, A. Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems. Automatica vol. 48 1963–1974 (2012) – 10.1016/j.automatica.2012.05.052
- Ionescu, T. C. & Astolfi, A. Moment matching for linear port Hamiltonian systems. IEEE Conference on Decision and Control and European Control Conference 7164–7169 (2011) doi:10.1109/cdc.2011.6160760 – 10.1109/cdc.2011.6160760
- Ionescu, T. C. & Scherpen, J. M. A. Passivity preserving model order reduction for the SMIB. 2008 47th IEEE Conference on Decision and Control 4879–4884 (2008) doi:10.1109/cdc.2008.4738962 – 10.1109/cdc.2008.4738962
- Jaimoukha, I. M. & Kasenally, E. M. Implicitly Restarted Krylov Subspace Methods for Stable Partial Realizations. SIAM Journal on Matrix Analysis and Applications vol. 18 633–652 (1997) – 10.1137/s0895479895279873
- Kundur, (1994)
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Polyuga, R. V. & van der Schaft, A. Moment matching for linear port-Hamiltonian systems. 2009 European Control Conference (ECC) 4715–4720 (2009) doi:10.23919/ecc.2009.7075145 – 10.23919/ecc.2009.7075145
- Polyuga, R. V. & van der Schaft, A. Structure preserving model reduction of port-Hamiltonian systems by moment matching at infinity. Automatica vol. 46 665–672 (2010) – 10.1016/j.automatica.2010.01.018
- van der Schaft, (2000)
- Wolf, T., Lohmann, B., Eid, R. & Kotyczka, P. Passivity and Structure Preserving Order Reduction of Linear Port-Hamiltonian Systems Using Krylov Subspaces. European Journal of Control vol. 16 401–406 (2010) – 10.3166/ejc.16.401-406