Port-Hamiltonian formulation of two-phase flow models
Authors
H. Bansal, P. Schulze, M.H. Abbasi, H. Zwart, L. Iapichino, W.H.A. Schilders, N. van de Wouw
Abstract
Two-phase flows are frequently modelled and simulated using the Two-Fluid Model (TFM) and the Drift Flux Model (DFM). This paper proposes Stokes–Dirac structures with respect to which port-Hamiltonian representations for such two-phase flow models can be obtained. We introduce a non-quadratic candidate Hamiltonian function and present dissipative Hamiltonian representations for both models. We then use the structure of the corresponding formally skew-adjoint operator to derive a Stokes–Dirac structure for the two variants of multi-phase flow models. Moreover, we discuss the difficulties in deriving a port-Hamiltonian formulation of the DFM with general slip conditions, and argue why this model may not be energy-consistent.
Keywords
Two-Fluid Model; Drift Flux Model; Non-quadratic Hamiltonian; Skew-adjoint; Stokes–Dirac structures; Port-Hamiltonian
Citation
- Journal: Systems & Control Letters
- Year: 2021
- Volume: 149
- Issue:
- Pages: 104881
- Publisher: Elsevier BV
- DOI: 10.1016/j.sysconle.2021.104881
BibTeX
@article{Bansal_2021,
title={{Port-Hamiltonian formulation of two-phase flow models}},
volume={149},
ISSN={0167-6911},
DOI={10.1016/j.sysconle.2021.104881},
journal={Systems & Control Letters},
publisher={Elsevier BV},
author={Bansal, H. and Schulze, P. and Abbasi, M.H. and Zwart, H. and Iapichino, L. and Schilders, W.H.A. and Wouw, N. van de},
year={2021},
pages={104881}
}
References
- Aarsnes, (2016)
- Aarsnes, (2014)
- Poullikkas, A. Effects of two-phase liquid-gas flow on the performance of nuclear reactor cooling pumps. Progress in Nuclear Energy vol. 42 3–10 (2003) – 10.1016/s0149-1970(03)80002-1
- Maschke, B. M. & van der Schaft, A. J. Port-Controlled Hamiltonian Systems: Modelling Origins and Systemtheoretic Properties. IFAC Proceedings Volumes vol. 25 359–365 (1992) – 10.1016/s1474-6670(17)52308-3
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Chaturantabut, S., Beattie, C. & Gugercin, S. Structure-Preserving Model Reduction for Nonlinear Port-Hamiltonian Systems. SIAM Journal on Scientific Computing vol. 38 B837–B865 (2016) – 10.1137/15m1055085
- Pasumarthy, R. & van der Schaft, A. A Finite Dimensional Approximation of the shallow water Equations: The port-Hamiltonian Approach. Proceedings of the 45th IEEE Conference on Decision and Control 3984–3989 (2006) doi:10.1109/cdc.2006.377022 – 10.1109/cdc.2006.377022
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM Journal on Control and Optimization vol. 43 743–767 (2004) – 10.1137/s0363012903429530
- Altmann, R. & Schulze, P. A port-Hamiltonian formulation of the Navier–Stokes equations for reactive flows. Systems & Control Letters vol. 100 51–55 (2017) – 10.1016/j.sysconle.2016.12.005
- Zhou, W., Hamroun, B., Gorrec, Y. L. & Couenne, F. Infinite Dimensional Port Hamiltonian Representation of reaction diffusion processes. IFAC-PapersOnLine vol. 48 476–481 (2015) – 10.1016/j.ifacol.2015.05.119
- de Wilde, (2015)
- Cardoso-Ribeiro, F. L., Matignon, D. & Pommier-Budinger, V. Modeling of a Fluid-structure coupled system using port-Hamiltonian formulation. IFAC-PapersOnLine vol. 48 217–222 (2015) – 10.1016/j.ifacol.2015.10.242
- Dos Santos, V., Maschke, B. & Le Gorrec, Y. A Hamiltonian perspective to thstabilization of systems of two conservation laws. Networks & Heterogeneous Media vol. 4 249–266 (2009) – 10.3934/nhm.2009.4.249
- Baaiu, A. et al. Port-based modelling of mass transport phenomena. Mathematical and Computer Modelling of Dynamical Systems vol. 15 233–254 (2009) – 10.1080/13873950902808578
- Holm, D. D. & Kupershmidt, B. A. Hydrodynamics and electrohydrodynamics of adiabatic multiphase fluids and plasmas. International Journal of Multiphase Flow vol. 12 667–680 (1986) – 10.1016/0301-9322(86)90067-4
- Evje, S. & Flåtten, T. On the Wave Structure of Two‐Phase Flow Models. SIAM Journal on Applied Mathematics vol. 67 487–511 (2007) – 10.1137/050633482
- Rashad, R., Califano, F., van der Schaft, A. J. & Stramigioli, S. Twenty years of distributed port-Hamiltonian systems: a literature review. IMA Journal of Mathematical Control and Information vol. 37 1400–1422 (2020) – 10.1093/imamci/dnaa018
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Lordejani, S. N. et al. Modeling and Numerical Implementation of Managed-Pressure-Drilling Systems for the Assessment of Pressure-Control Systems. SPE Drilling & Completion vol. 35 598–619 (2020) – 10.2118/201108-pa
- Bansal, (2020)
- Olver, (1986)
- Evje, S. & Fjelde, K. K. Hybrid Flux-Splitting Schemes for a Two-Phase Flow Model. Journal of Computational Physics vol. 175 674–701 (2002) – 10.1006/jcph.2001.6962
- (2009)
- Villegas, (2007)
- Abbasi, M. H. et al. Power-Preserving Interconnection of Single- and Two-Phase Flow Models for Managed Pressure Drilling. 2020 American Control Conference (ACC) 3097–3102 (2020) doi:10.23919/acc45564.2020.9147405 – 10.23919/acc45564.2020.9147405
- Kurula, Composition of infinite-dimensional dirac structures. (2006)
- Gelfand, (1963)
- Bansal, Port-Hamiltonian modelling of fluid dynamics models with variable cross-section. (2020)
- Ishii, (2006)