Port-Hamiltonian modeling of ideal fluid flow: Part I. Foundations and kinetic energy
Authors
Ramy Rashad, Federico Califano, Frederic P. Schuller, Stefano Stramigioli
Abstract
In this two-parts paper, we present a systematic procedure to extend the known Hamiltonian model of ideal inviscid fluid flow on Riemannian manifolds in terms of Lie–Poisson structures to a port-Hamiltonian model in terms of Stokes-Dirac structures. The first novelty of the presented model is the inclusion of non-zero energy exchange through, and within, the spatial boundaries of the domain containing the fluid. The second novelty is that the port-Hamiltonian model is constructed as the interconnection of a small set of building blocks of open energetic subsystems. Depending only on the choice of subsystems one composes and their energy-aware interconnection, the geometric description of a wide range of fluid dynamical systems can be achieved. The constructed port-Hamiltonian models include a number of inviscid fluid dynamical systems with variable boundary conditions. Namely, compressible isentropic flow, compressible adiabatic flow, and incompressible flow. Furthermore, all the derived fluid flow models are valid covariantly and globally on n-dimensional Riemannian manifolds using differential geometric tools of exterior calculus.
Keywords
Port-Hamiltonian; Ideal fluid flow; Stokes-Dirac structures; Geometric fluid dynamics
Citation
- Journal: Journal of Geometry and Physics
- Year: 2021
- Volume: 164
- Issue:
- Pages: 104201
- Publisher: Elsevier BV
- DOI: 10.1016/j.geomphys.2021.104201
BibTeX
@article{Rashad_2021,
title={{Port-Hamiltonian modeling of ideal fluid flow: Part I. Foundations and kinetic energy}},
volume={164},
ISSN={0393-0440},
DOI={10.1016/j.geomphys.2021.104201},
journal={Journal of Geometry and Physics},
publisher={Elsevier BV},
author={Rashad, Ramy and Califano, Federico and Schuller, Frederic P. and Stramigioli, Stefano},
year={2021},
pages={104201}
}
References
- Abraham, (1988)
- Altmann, R. & Schulze, P. A port-Hamiltonian formulation of the Navier–Stokes equations for reactive flows. Systems & Control Letters vol. 100 51–55 (2017) – 10.1016/j.sysconle.2016.12.005
- Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. (1966)
- Breedveld, (1984)
- Duindam, (2009)
- Ebin, D. G. & Marsden, J. Groups of Diffeomorphisms and the Motion of an Incompressible Fluid. The Annals of Mathematics vol. 92 102 (1970) – 10.2307/1970699
- Frankel, (2011)
- Holm, D. D., Marsden, J. E. & Ratiu, T. S. The Euler–Poincaré Equations and Semidirect Products with Applications to Continuum Theories. Advances in Mathematics vol. 137 1–81 (1998) – 10.1006/aima.1998.1721
- Holm, (2009)
- Marsden, Hamiltonian mechanics on Lie groups and hydrodynamics. (1970)
- Marsden, J. E., Ratiu, T. & Weinstein, A. Reduction and Hamiltonian structures on duals of semidirect product Lie algebras. Contemporary Mathematics 55–100 (1984) doi:10.1090/conm/028/751975 – 10.1090/conm/028/751975
- Marsden, J. E., Raţiu, T. & Weinstein, A. Semidirect products and reduction in mechanics. Transactions of the American Mathematical Society vol. 281 147–177 (1984) – 10.1090/s0002-9947-1984-0719663-1
- Maschke, B. M., Van Der Schaft, A. J. & Breedveld, P. C. An intrinsic hamiltonian formulation of network dynamics: non-standard poisson structures and gyrators. Journal of the Franklin Institute vol. 329 923–966 (1992) – 10.1016/s0016-0032(92)90049-m
- Modin, K., Perlmutter, M., Marsland, S. & McLachlan, R. On Euler–Arnold equations and totally geodesic subgroups. Journal of Geometry and Physics vol. 61 1446–1461 (2011) – 10.1016/j.geomphys.2011.03.007
- Morrison, P. J. Hamiltonian description of the ideal fluid. Reviews of Modern Physics vol. 70 467–521 (1998) – 10.1103/revmodphys.70.467
- Polner, M. & van der Vegt, J. J. W. A Hamiltonian vorticity–dilatation formulation of the compressible Euler equations. Nonlinear Analysis: Theory, Methods & Applications vol. 109 113–135 (2014) – 10.1016/j.na.2014.07.005
- Rashad, R., Califano, F., van der Schaft, A. J. & Stramigioli, S. Twenty years of distributed port-Hamiltonian systems: a literature review. IMA Journal of Mathematical Control and Information vol. 37 1400–1422 (2020) – 10.1093/imamci/dnaa018
- Van Der Schaft, Fluid dynamical systems as Hamiltonian boundary control systems. (2001)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Vankerschaver, Stokes-Dirac structures through reduction of infinite-dimensional Dirac structures. (2010)