Port-Hamiltonian Modeling and IDA-PBC Control of an IPMC-Actuated Flexible Beam
Authors
Weijun Zhou, Yongxin Wu, Haiqiang Hu, Yanjun Li, Yu Wang
Abstract
In this paper, the infinite-dimensional port-Hamiltonian modelling and control problem of a flexible beam actuated using ionic polymer metal composite (IPMC) actuators is investigated. The port-Hamiltonian framework is used to propose an interconnected control model of the mechanical flexible beam and the IPMC actuator. The mechanical flexible dynamic is modelled as a Timoshenko beam, and the electric dynamics of the IPMCs are considered in the model. Furthermore, a passivity-based control-strategy is used to obtain the desired configuration of the proposed interconnected system, and the closed-loop stability is analyzed using the early lumped approach. Lastly, numerical simulations and experimental results are presented to validate the proposed model and the effectiveness of the proposed control law.
Citation
- Journal: Actuators
- Year: 2021
- Volume: 10
- Issue: 9
- Pages: 236
- Publisher: MDPI AG
- DOI: 10.3390/act10090236
BibTeX
@article{Zhou_2021,
title={{Port-Hamiltonian Modeling and IDA-PBC Control of an IPMC-Actuated Flexible Beam}},
volume={10},
ISSN={2076-0825},
DOI={10.3390/act10090236},
number={9},
journal={Actuators},
publisher={MDPI AG},
author={Zhou, Weijun and Wu, Yongxin and Hu, Haiqiang and Li, Yanjun and Wang, Yu},
year={2021},
pages={236}
}
References
- Chikhaoui, M. T., Rabenorosoa, K. & Andreff, N. Kinematic Modeling of an EAP Actuated Continuum Robot for Active Micro-endoscopy. Advances in Robot Kinematics 457–465 (2014) doi:10.1007/978-3-319-06698-1_47 – 10.1007/978-3-319-06698-1_47
- Shahinpoor, M. & Kim, K. J. Ionic polymer-metal composites: I. Fundamentals. Smart Materials and Structures vol. 10 819–833 (2001) – 10.1088/0964-1726/10/4/327
- Maschke, B. M. & van der Schaft, A. J. Port-Controlled Hamiltonian Systems: Modelling Origins and Systemtheoretic Properties. IFAC Proceedings Volumes vol. 25 359–365 (1992) – 10.1016/s1474-6670(17)52308-3
- Mattioni, A., Wu, Y. & Le Gorrec, Y. Infinite dimensional model of a double flexible-link manipulator: The Port-Hamiltonian approach. Applied Mathematical Modelling vol. 83 59–75 (2020) – 10.1016/j.apm.2020.02.008
- Monshizadeh, P., Machado, J. E., Ortega, R. & van der Schaft, A. Power-controlled Hamiltonian systems: Application to electrical systems with constant power loads. Automatica vol. 109 108527 (2019) – 10.1016/j.automatica.2019.108527
- Hoang, H., Couenne, F., Jallut, C. & Le Gorrec, Y. The port Hamiltonian approach to modeling and control of Continuous Stirred Tank Reactors. Journal of Process Control vol. 21 1449–1458 (2011) – 10.1016/j.jprocont.2011.06.014
- Maschke, B. M. & van der Schaft, A. Hamiltonian representation of distributed parameter systems with boundary energy flow. Lecture Notes in Control and Information Sciences 137–142 (2001) doi:10.1007/bfb0110297 – 10.1007/bfb0110297
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Zhou, W., Hamroun, B., Couenne, F. & Le Gorrec, Y. Distributed port-Hamiltonian modelling for irreversible processes. Mathematical and Computer Modelling of Dynamical Systems vol. 23 3–22 (2016) – 10.1080/13873954.2016.1237970
- Nishida, G., Takagi, K., Maschke, B. & Osada, T. Multi-scale distributed parameter modeling of ionic polymer-metal composite soft actuator. Control Engineering Practice vol. 19 321–334 (2011) – 10.1016/j.conengprac.2010.10.005
- Liu, N., Wu, Y. & Le Gorrec, Y. Energy-Based Modeling of Ionic Polymer–Metal Composite Actuators Dedicated to the Control of Flexible Structures. IEEE/ASME Transactions on Mechatronics vol. 26 3139–3150 (2021) – 10.1109/tmech.2021.3053609
- Macchelli, A. Energy shaping of distributed parameter port-Hamiltonian systems based on finite element approximation. Systems & Control Letters vol. 60 579–589 (2011) – 10.1016/j.sysconle.2011.04.016
- Ramirez, H., Le Gorrec, Y., Macchelli, A. & Zwart, H. Exponential Stabilization of Boundary Controlled Port-Hamiltonian Systems With Dynamic Feedback. IEEE Transactions on Automatic Control vol. 59 2849–2855 (2014) – 10.1109/tac.2014.2315754
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Mattioni, A., Wu, Y., Ramirez, H., Le Gorrec, Y. & Macchelli, A. Modelling and control of an IPMC actuated flexible structure: A lumped port Hamiltonian approach. Control Engineering Practice vol. 101 104498 (2020) – 10.1016/j.conengprac.2020.104498
- Wu, Y., Lamoline, F., Winkin, J. & Gorrec, Y. L. Modeling and control of an IPMC actuated flexible beam under the port-Hamiltonian framework. IFAC-PapersOnLine vol. 52 108–113 (2019) – 10.1016/j.ifacol.2019.08.019
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM Journal on Control and Optimization vol. 43 743–767 (2004) – 10.1137/s0363012903429530
- Gutta, S., Lee, J. S., Trabia, M. B. & Yim, W. Modeling of ionic polymer metal composite actuator dynamics using a large deflection beam model. Smart Materials and Structures vol. 18 115023 (2009) – 10.1088/0964-1726/18/11/115023
- Golo, G., Talasila, V., van der Schaft, A. & Maschke, B. Hamiltonian discretization of boundary control systems. Automatica vol. 40 757–771 (2004) – 10.1016/j.automatica.2003.12.017
- Moulla, R., Lefévre, L. & Maschke, B. Pseudo-spectral methods for the spatial symplectic reduction of open systems of conservation laws. Journal of Computational Physics vol. 231 1272–1292 (2012) – 10.1016/j.jcp.2011.10.008
- Trenchant, V., Ramirez, H., Le Gorrec, Y. & Kotyczka, P. Finite differences on staggered grids preserving the port-Hamiltonian structure with application to an acoustic duct. Journal of Computational Physics vol. 373 673–697 (2018) – 10.1016/j.jcp.2018.06.051
- Kotyczka, P. Finite Volume Structure-Preserving Discretization of 1D Distributed-Parameter Port-Hamiltonian Systems. IFAC-PapersOnLine vol. 49 298–303 (2016) – 10.1016/j.ifacol.2016.07.457
- Rashad, R., Califano, F., van der Schaft, A. J. & Stramigioli, S. Twenty years of distributed port-Hamiltonian systems: a literature review. IMA Journal of Mathematical Control and Information vol. 37 1400–1422 (2020) – 10.1093/imamci/dnaa018
- Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control vol. 10 432–450 (2004) – 10.3166/ejc.10.432-450
- Lei, H., Lim, C. & Tan, X. Humidity-dependence of IPMC sensing dynamics: characterization and modeling from a physical perspective. Meccanica vol. 50 2663–2673 (2015) – 10.1007/s11012-015-0164-6