Port-Hamiltonian Modeling for Control
Authors
Abstract
This article provides a concise summary of the basic ideas and concepts in port-Hamiltonian systems theory and its use in analysis and control of complex multiphysics systems. It gives special attention to new and unexplored research directions and relations with other mathematical frameworks. Emergent control paradigms and open problems are indicated, including the relation with thermodynamics and the question of uniting the energy-processing view of control, as emphasized by port-Hamiltonian systems theory, with a complementary information-processing viewpoint.
Citation
- Journal: Annual Review of Control, Robotics, and Autonomous Systems
- Year: 2020
- Volume: 3
- Issue: 1
- Pages: 393–416
- Publisher: Annual Reviews
- DOI: 10.1146/annurev-control-081219-092250
BibTeX
@article{van_der_Schaft_2020,
title={{Port-Hamiltonian Modeling for Control}},
volume={3},
ISSN={2573-5144},
DOI={10.1146/annurev-control-081219-092250},
number={1},
journal={Annual Review of Control, Robotics, and Autonomous Systems},
publisher={Annual Reviews},
author={van der Schaft, Arjan},
year={2020},
pages={393--416}
}
References
- Paynter HM., Analysis and Design of Engineering Systems (1960)
- Breedveld PC., Physical systems theory in terms of bond graphs (1984)
- Golo G, Nonlinear and Hybrid Systems in Automotive Control (2003)
- Breedveld PC., Modeling and Control of Complex Physical Systems: The Port-Hamiltonian Approach (2009)
- Maschke, B. M. & van der Schaft, A. J. Port-Controlled Hamiltonian Systems: Modelling Origins and Systemtheoretic Properties. IFAC Proceedings Volumes vol. 25 359–365 (1992) – 10.1016/s1474-6670(17)52308-3
- van der Schaft AJ, Arch. Elektron. Übertragungstech. (1995)
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM Journal on Control and Optimization vol. 37 54–91 (1998) – 10.1137/s0363012996312039
- van der Schaft, A. L2-Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer International Publishing, 2017). doi:10.1007/978-3-319-49992-5 – 10.1007/978-3-319-49992-5
- van der Schaft AJ., Modeling and Control of Complex Physical Systems: The Port-Hamiltonian Approach (2009)
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Courant, T. J. Dirac manifolds. Transactions of the American Mathematical Society vol. 319 631–661 (1990) – 10.1090/s0002-9947-1990-0998124-1
- Dorfman I., Dirac Structures and Integrability of Nonlinear Evolution Equations (1993)
- Abraham RA, Foundations of Mechanics (1994)
- Marsden, J. E. & Ratiu, T. S. Introduction to Mechanics and Symmetry. Texts in Applied Mathematics (Springer New York, 1999). doi:10.1007/978-0-387-21792-5 – 10.1007/978-0-387-21792-5
- Libermann, P. & Marle, C.-M. Symplectic Geometry and Analytical Mechanics. (Springer Netherlands, 1987). doi:10.1007/978-94-009-3807-6 – 10.1007/978-94-009-3807-6
- Arnold, V. I. Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics (Springer New York, 1978). doi:10.1007/978-1-4757-1693-1 – 10.1007/978-1-4757-1693-1
- Vu, N. M. T., Lefèvre, L. & Maschke, B. A structured control model for the thermo-magneto-hydrodynamics of plasmas in tokamaks. Mathematical and Computer Modelling of Dynamical Systems vol. 22 181–206 (2016) – 10.1080/13873954.2016.1154874
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- van der Schaft, A. J. & Maschke, B. M. Port-Hamiltonian Systems on Graphs. SIAM Journal on Control and Optimization vol. 51 906–937 (2013) – 10.1137/110840091
- Stegink, T., De Persis, C. & van der Schaft, A. A Unifying Energy-Based Approach to Stability of Power Grids With Market Dynamics. IEEE Transactions on Automatic Control vol. 62 2612–2622 (2017) – 10.1109/tac.2016.2613901
- van der Schaft, A. J. Implicit Hamiltonian systems with symmetry. Reports on Mathematical Physics vol. 41 203–221 (1998) – 10.1016/s0034-4877(98)80176-6
- Blankenstein, G. & van der Schaft, A. J. Symmetry and reduction in implicit generalized Hamiltonian systems. Reports on Mathematical Physics vol. 47 57–100 (2001) – 10.1016/s0034-4877(01)90006-0
- Cervera, J., van der Schaft, A. J. & Baños, A. Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica vol. 43 212–225 (2007) – 10.1016/j.automatica.2006.08.014
- Willems, J. C. Dissipative dynamical systems part I: General theory. Archive for Rational Mechanics and Analysis vol. 45 321–351 (1972) – 10.1007/bf00276493
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Ortega, R., van der Schaft, A., Castanos, F. & Astolfi, A. Control by Interconnection and Standard Passivity-Based Control of Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 53 2527–2542 (2008) – 10.1109/tac.2008.2006930
- Hogan, N. Impedance Control: An Approach to Manipulation: Part I—Theory. Journal of Dynamic Systems, Measurement, and Control vol. 107 1–7 (1985) – 10.1115/1.3140702
- van der Schaft, A. Characterization and partial synthesis of the behavior of resistive circuits at their terminals. Systems & Control Letters vol. 59 423–428 (2010) – 10.1016/j.sysconle.2010.05.005
- Duindam, V. & Stramigioli, S. Port-Based Asymptotic Curve Tracking for Mechanical Systems. European Journal of Control vol. 10 411–420 (2004) – 10.3166/ejc.10.411-420
- Folkertsma, G. A. & Stramigioli, S. Energy in Robotics. Foundations and Trends® in Robotics vol. 6 140–210 (2017) – 10.1561/2300000038
- Camlibel, M. K. & van der Schaft, A. J. Incrementally port-Hamiltonian systems. 52nd IEEE Conference on Decision and Control 2538–2543 (2013) doi:10.1109/cdc.2013.6760262 – 10.1109/cdc.2013.6760262
- Rockafellar, R. T. & Wets, R. J. B. Variational Analysis. Grundlehren der mathematischen Wissenschaften (Springer Berlin Heidelberg, 1998). doi:10.1007/978-3-642-02431-3 – 10.1007/978-3-642-02431-3
- Maschke, B., Ortega, R. & Van Der Schaft, A. J. Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation. IEEE Transactions on Automatic Control vol. 45 1498–1502 (2000) – 10.1109/9.871758
- Crouch, P. E. Geometric structures in systems theory. IEE Proceedings D Control Theory and Applications vol. 128 242 (1981) – 10.1049/ip-d.1981.0051
- Cortés, J., van der Schaft, A. & Crouch, P. E. Characterization of Gradient Control Systems. SIAM Journal on Control and Optimization vol. 44 1192–1214 (2005) – 10.1137/s0363012903425568
- van der Schaft, A. J. On The Relation Between Port-Hamiltonian And Gradient Systems. IFAC Proceedings Volumes vol. 44 3321–3326 (2011) – 10.3182/20110828-6-it-1002.00555
- Duistermaat, J. J. On Hessian Riemannian structures. Asian Journal of Mathematics vol. 5 79–91 (2001) – 10.4310/ajm.2001.v5.n1.a6
- Brayton, R. K. & Moser, J. K. A theory of nonlinear networks. I. Quarterly of Applied Mathematics vol. 22 1–33 (1964) – 10.1090/qam/169746
- Brayton, R. K. & Moser, J. K. A theory of nonlinear networks. II. Quarterly of Applied Mathematics vol. 22 81–104 (1964) – 10.1090/qam/169747
- van der Schaft, A. & Maschke, B. Generalized port-Hamiltonian DAE systems. Systems & Control Letters vol. 121 31–37 (2018) – 10.1016/j.sysconle.2018.09.008
- Beattie, C., Mehrmann, V., Xu, H. & Zwart, H. Linear port-Hamiltonian descriptor systems. Mathematics of Control, Signals, and Systems vol. 30 (2018) – 10.1007/s00498-018-0223-3
- Eberard, D., Maschke, B. M. & van der Schaft, A. J. An extension of Hamiltonian systems to the thermodynamic phase space: Towards a geometry of nonreversible processes. Reports on Mathematical Physics vol. 60 175–198 (2007) – 10.1016/s0034-4877(07)00024-9
- Van der Schaft, A. & Maschke, B. Geometry of Thermodynamic Processes. Entropy vol. 20 925 (2018) – 10.3390/e20120925
- Forni, F., Sepulchre, R. & van der Schaft, A. J. On differential passivity of physical systems. 52nd IEEE Conference on Decision and Control 6580–6585 (2013) doi:10.1109/cdc.2013.6760930 – 10.1109/cdc.2013.6760930