An Overview on Irreversible Port-Hamiltonian Systems
Authors
Hector Ramirez, Yann Le Gorrec
Abstract
A comprehensive overview of the irreversible port-Hamiltonian system’s formulation for finite and infinite dimensional systems defined on 1D spatial domains is provided in a unified manner. The irreversible port-Hamiltonian system formulation shows the extension of classical port-Hamiltonian system formulations to cope with irreversible thermodynamic systems for finite and infinite dimensional systems. This is achieved by including, in an explicit manner, the coupling between irreversible mechanical and thermal phenomena with the thermal domain as an energy-preserving and entropy-increasing operator. Similarly to Hamiltonian systems, this operator is skew-symmetric, guaranteeing energy conservation. To distinguish from Hamiltonian systems, the operator depends on co-state variables and is, hence, a nonlinear-function in the gradient of the total energy. This is what allows encoding the second law as a structural property of irreversible port-Hamiltonian systems. The formalism encompasses coupled thermo-mechanical systems and purely reversible or conservative systems as a particular case. This appears clearly when splitting the state space such that the entropy coordinate is separated from other state variables. Several examples have been used to illustrate the formalism, both for finite and infinite dimensional systems, and a discussion on ongoing and future studies is provided.
Citation
- Journal: Entropy
- Year: 2022
- Volume: 24
- Issue: 10
- Pages: 1478
- Publisher: MDPI AG
- DOI: 10.3390/e24101478
BibTeX
@article{Ramirez_2022,
title={{An Overview on Irreversible Port-Hamiltonian Systems}},
volume={24},
ISSN={1099-4300},
DOI={10.3390/e24101478},
number={10},
journal={Entropy},
publisher={MDPI AG},
author={Ramirez, Hector and Le Gorrec, Yann},
year={2022},
pages={1478}
}
References
- Ramirez, H., Maschke, B. & Sbarbaro, D. Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR. Chemical Engineering Science vol. 89 223–234 (2013) – 10.1016/j.ces.2012.12.002
- Ramirez, H., Maschke, B. & Sbarbaro, D. Modelling and control of multi-energy systems: An irreversible port-Hamiltonian approach. European Journal of Control vol. 19 513–520 (2013) – 10.1016/j.ejcon.2013.09.009
- Maschke, B. M., van der Schaft, A. J. & Breedveld, P. C. An intrinsic Hamiltonian formulation of the dynamics of LC-circuits. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications vol. 42 73–82 (1995) – 10.1109/81.372847
- Maschke, The Hamiltonian Formulation of Energy Conserving Physical Systems with External Ports. Arch. Elektron. Übertrag. (1995)
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Arnold, V. I. Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics (Springer New York, 1989). doi:10.1007/978-1-4757-2063-1 – 10.1007/978-1-4757-2063-1
- Marsden, J. E. Lectures on Mechanics. (1992) doi:10.1017/cbo9780511624001 – 10.1017/cbo9780511624001
- Advanced Dynamics and Control of Structures and Machines. (Springer Vienna, 2004). doi:10.1007/978-3-7091-2774-2 – 10.1007/978-3-7091-2774-2
- Ortega, J.-P. & Planas-Bielsa, V. Dynamics on Leibniz manifolds. Journal of Geometry and Physics vol. 52 1–27 (2004) – 10.1016/j.geomphys.2004.01.002
- Dubljevic, S. Quo Vadis advanced chemical process control. The Canadian Journal of Chemical Engineering vol. 100 2135–2139 (2022) – 10.1002/cjce.24505
- Willems, J. C. Dissipative dynamical systems part I: General theory. Archive for Rational Mechanics and Analysis vol. 45 321–351 (1972) – 10.1007/bf00276493
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- Brogliato, B., Lozano, R., Maschke, B. & Egeland, O. Dissipative Systems Analysis and Control. Communications and Control Engineering (Springer International Publishing, 2020). doi:10.1007/978-3-030-19420-8 – 10.1007/978-3-030-19420-8
- Christofides, P. D. & Daoutidis, P. Robust control of hyperbolic PDE systems. Chemical Engineering Science vol. 53 85–105 (1998) – 10.1016/s0009-2509(97)87571-9
- Christofides, P. D. Nonlinear and Robust Control of PDE Systems. Systems & Control: Foundations & Applications (Birkhäuser Boston, 2001). doi:10.1007/978-1-4612-0185-4 – 10.1007/978-1-4612-0185-4
- Alonso, A. A. & Erik Ydstie, B. Process systems, passivity and the second law of thermodynamics. Computers & Chemical Engineering vol. 20 S1119–S1124 (1996) – 10.1016/0098-1354(96)00194-9
- Alonso, A. A. & Ydstie, B. E. Stabilization of distributed systems using irreversible thermodynamics. Automatica vol. 37 1739–1755 (2001) – 10.1016/s0005-1098(01)00140-6
- Alonso, A. A., Ydstie, B. E. & Banga, J. R. From irreversible thermodynamics to a robust control theory for distributed process systems. Journal of Process Control vol. 12 507–517 (2002) – 10.1016/s0959-1524(01)00017-8
- Schaum, A., Meurer, T. & Moreno, J. A. Dissipative observers for coupled diffusion–convection–reaction systems. Automatica vol. 94 307–314 (2018) – 10.1016/j.automatica.2018.04.041
- Mora, L. A., Le Gorrec, Y., Matignon, D., Ramirez, H. & Yuz, J. I. On port-Hamiltonian formulations of 3-dimensional compressible Newtonian fluids. Physics of Fluids vol. 33 (2021) – 10.1063/5.0067784
- Favache, A. & Dochain, D. Power-shaping control of reaction systems: The CSTR case. Automatica vol. 46 1877–1883 (2010) – 10.1016/j.automatica.2010.07.011
- Favache, A., Dochain, D. & Winkin, J. J. Power-shaping control: Writing the system dynamics into the Brayton–Moser form. Systems & Control Letters vol. 60 618–624 (2011) – 10.1016/j.sysconle.2011.04.021
- Brayton, R. K. & Moser, J. K. A theory of nonlinear networks. I. Quarterly of Applied Mathematics vol. 22 1–33 (1964) – 10.1090/qam/169746
- Smale, S. On the mathematical foundations of electrical circuit theory. Journal of Differential Geometry vol. 7 (1972) – 10.4310/jdg/1214430827
- Grmela, M. & Öttinger, H. C. Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Physical Review E vol. 56 6620–6632 (1997) – 10.1103/physreve.56.6620
- Grmela, M. & Öttinger, H. C. Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Physical Review E vol. 56 6620–6632 (1997) – 10.1103/physreve.56.6620
- Muschik, W., Gümbel, S., Kröger, M. & Öttinger, H. C. A simple example for comparing GENERIC with rational non-equilibrium thermodynamics. Physica A: Statistical Mechanics and its Applications vol. 285 448–466 (2000) – 10.1016/s0378-4371(00)00252-1
- Ramírez, H., Sbarbaro, D. & Ortega, R. On the control of non-linear processes: An IDA–PBC approach. Journal of Process Control vol. 19 405–414 (2009) – 10.1016/j.jprocont.2008.06.018
- Hoang, H., Couenne, F., Jallut, C. & Le Gorrec, Y. The port Hamiltonian approach to modeling and control of Continuous Stirred Tank Reactors. Journal of Process Control vol. 21 1449–1458 (2011) – 10.1016/j.jprocont.2011.06.014
- Hoang, H., Couenne, F., Jallut, C. & Le Gorrec, Y. Lyapunov-based control of non isothermal continuous stirred tank reactors using irreversible thermodynamics. Journal of Process Control vol. 22 412–422 (2012) – 10.1016/j.jprocont.2011.12.007
- Gay-Balmaz, F. & Yoshimura, H. A Variational Formulation of Nonequilibrium Thermodynamics for Discrete Open Systems with Mass and Heat Transfer. Entropy vol. 20 163 (2018) – 10.3390/e20030163
- Mrugala, R., Nulton, J. D., Christian Schön, J. & Salamon, P. Contact structure in thermodynamic theory. Reports on Mathematical Physics vol. 29 109–121 (1991) – 10.1016/0034-4877(91)90017-h
- Eberard, D., Maschke, B. M. & van der Schaft, A. J. An extension of Hamiltonian systems to the thermodynamic phase space: Towards a geometry of nonreversible processes. Reports on Mathematical Physics vol. 60 175–198 (2007) – 10.1016/s0034-4877(07)00024-9
- Favache, A., Dochain, D. & Maschke, B. An entropy-based formulation of irreversible processes based on contact structures. Chemical Engineering Science vol. 65 5204–5216 (2010) – 10.1016/j.ces.2010.06.019
- Ramirez, H., Maschke, B. & Sbarbaro, D. Feedback equivalence of input–output contact systems. Systems & Control Letters vol. 62 475–481 (2013) – 10.1016/j.sysconle.2013.02.008
- Ramirez, H., Maschke, B. & Sbarbaro, D. Partial Stabilization of Input-Output Contact Systems on a Legendre Submanifold. IEEE Transactions on Automatic Control vol. 62 1431–1437 (2017) – 10.1109/tac.2016.2572403
- Merker, J. & Krüger, M. On a variational principle in thermodynamics. Continuum Mechanics and Thermodynamics vol. 25 779–793 (2012) – 10.1007/s00161-012-0277-2
- Van der Schaft, A. & Maschke, B. Geometry of Thermodynamic Processes. Entropy vol. 20 925 (2018) – 10.3390/e20120925
- Ramirez, H., Gorrec, Y. L. & Maschke, B. Boundary controlled irreversible port-Hamiltonian systems. Chemical Engineering Science vol. 248 117107 (2022) – 10.1016/j.ces.2021.117107
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Caballeria, J., Ramirez, H. & Gorrec, Y. L. An irreversible port-Hamiltonian model for a class of piezoelectric actuators. IFAC-PapersOnLine vol. 54 436–441 (2021) – 10.1016/j.ifacol.2021.10.393
- Ramirez, H., Sbarbaro, D. & Gorrec, Y. L. Irreversible Port-Hamiltonian Formulation of some Non-isothermal Electrochemical Processes. IFAC-PapersOnLine vol. 52 19–24 (2019) – 10.1016/j.ifacol.2019.07.004
- Mora, L. A., Le Gorrec, Y. & Ramirez, H. Available energy-based interconnection and entropy assignment (ABI-EA) boundary control of the heat equation: an Irreversible Port Hamiltonian approach. 2022 American Control Conference (ACC) 2397–2402 (2022) doi:10.23919/acc53348.2022.9867213 – 10.23919/acc53348.2022.9867213
- Villalobos, I., Ramírez, H. & Gorrec, Y. L. Energy shaping plus Damping injection of Irreversible Port Hamiltonian Systems. IFAC-PapersOnLine vol. 53 11539–11544 (2020) – 10.1016/j.ifacol.2020.12.630
- Ramírez, H., Le Gorrec, Y., Maschke, B. & Couenne, F. On the passivity based control of irreversible processes: A port-Hamiltonian approach. Automatica vol. 64 105–111 (2016) – 10.1016/j.automatica.2015.07.002
- Ortega, R., van der Schaft, A., Castanos, F. & Astolfi, A. Control by Interconnection and Standard Passivity-Based Control of Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 53 2527–2542 (2008) – 10.1109/tac.2008.2006930
- Libermann, P. & Marle, C.-M. Symplectic Geometry and Analytical Mechanics. (Springer Netherlands, 1987). doi:10.1007/978-94-009-3807-6 – 10.1007/978-94-009-3807-6
- van der Schaft, A. J. System theory and mechanics. Lecture Notes in Control and Information Sciences 426–452 (1989) doi:10.1007/bfb0008472 – 10.1007/bfb0008472
- Ortega, R., Astolfi, A., Bastin, G. & Rodriguez, H. Stabilization of food-chain systems using a port-controlled Hamiltonian description. Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334) (2000) doi:10.1109/acc.2000.878579 – 10.1109/acc.2000.878579
- Sbarbaro, D. & Ortega, R. Averaging level control: An approach based on mass balance. Journal of Process Control vol. 17 621–629 (2007) – 10.1016/j.jprocont.2007.01.005
- Dörfler, F., Johnsen, J. K. & Allgöwer, F. An introduction to interconnection and damping assignment passivity-based control in process engineering. Journal of Process Control vol. 19 1413–1426 (2009) – 10.1016/j.jprocont.2009.07.015
- Oster, G. F. & Perelson, A. S. Chemical reaction dynamics. Archive for Rational Mechanics and Analysis vol. 55 230–274 (1974) – 10.1007/bf00281751
- Otero-Muras, I., Szederkényi, G., Alonso, A. A. & Hangos, K. M. Local dissipative Hamiltonian description of reversible reaction networks. Systems & Control Letters vol. 57 554–560 (2008) – 10.1016/j.sysconle.2007.12.003
- Maschke, B. M., Van Der Schaft, A. J. & Breedveld, P. C. An intrinsic hamiltonian formulation of network dynamics: non-standard poisson structures and gyrators. Journal of the Franklin Institute vol. 329 923–966 (1992) – 10.1016/s0016-0032(92)90049-m
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM Journal on Control and Optimization vol. 37 54–91 (1998) – 10.1137/s0363012996312039
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Grmela, M. Lagrange hydrodynamics as extended Euler hydrodynamics: Hamiltonian and GENERIC structures. Physics Letters A vol. 296 97–104 (2002) – 10.1016/s0375-9601(02)00190-1
- Jongschaap, R. & Öttinger, H. C. The mathematical representation of driven thermodynamic systems. Journal of Non-Newtonian Fluid Mechanics vol. 120 3–9 (2004) – 10.1016/j.jnnfm.2003.11.008
- Couenne, F., Jallut, C., Maschke, B., Breedveld, P. C. & Tayakout, M. Bond graph modelling for chemical reactors. Mathematical and Computer Modelling of Dynamical Systems vol. 12 159–174 (2006) – 10.1080/13873950500068823
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1
- Ramirez, H., Le Gorrec, Y., Macchelli, A. & Zwart, H. Exponential Stabilization of Boundary Controlled Port-Hamiltonian Systems With Dynamic Feedback. IEEE Transactions on Automatic Control vol. 59 2849–2855 (2014) – 10.1109/tac.2014.2315754
- Macchelli, A., Le Gorrec, Y., Ramirez, H. & Zwart, H. On the Synthesis of Boundary Control Laws for Distributed Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 62 1700–1713 (2017) – 10.1109/tac.2016.2595263
- Ramirez, H., Zwart, H. & Le Gorrec, Y. Stabilization of infinite dimensional port-Hamiltonian systems by nonlinear dynamic boundary control. Automatica vol. 85 61–69 (2017) – 10.1016/j.automatica.2017.07.045
- Zwart, H., Le Gorrec, Y. & Maschke, B. Building systems from simple hyperbolic ones. Systems & Control Letters vol. 91 1–6 (2016) – 10.1016/j.sysconle.2016.02.002
- Kjelstrup, S., Bedeaux, D., Johannessen, E. & Gross, J. Non-Equilibrium Thermodynamics for Engineers. (WORLD SCIENTIFIC, 2016). doi:10.1142/10286 – 10.1142/10286
- Maschke, Compositional modelling of distributed-parameter systems. Advanced Topics in Control Systems Theory. Lecture Notes from FAP 2004 (2005)
- Olver, P. J. Applications of Lie Groups to Differential Equations. Graduate Texts in Mathematics (Springer New York, 1993). doi:10.1007/978-1-4612-4350-2 – 10.1007/978-1-4612-4350-2
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Schaller, M., Philipp, F., Faulwasser, T., Worthmann, K. & Maschke, B. Control of port-Hamiltonian systems with minimal energy supply. European Journal of Control vol. 62 33–40 (2021) – 10.1016/j.ejcon.2021.06.017
- Andresen, B., Salamon, P. & Berry, R. S. Thermodynamics in finite time. Physics Today vol. 37 62–70 (1984) – 10.1063/1.2916405
- Salamon, P., Nulton, J. D., Siragusa, G., Andersen, T. R. & Limon, A. Principles of control thermodynamics. Energy vol. 26 307–319 (2001) – 10.1016/s0360-5442(00)00059-1
- Andresen, B. & Salamon, P. Future Perspectives of Finite-Time Thermodynamics. Entropy vol. 24 690 (2022) – 10.3390/e24050690
- Lohmayer, M., Kotyczka, P. & Leyendecker, S. Exergetic port-Hamiltonian systems: modelling basics. Mathematical and Computer Modelling of Dynamical Systems vol. 27 489–521 (2021) – 10.1080/13873954.2021.1979592
- Delvenne, J.-C. & Sandberg, H. Finite-time thermodynamics of port-Hamiltonian systems. Physica D: Nonlinear Phenomena vol. 267 123–132 (2014) – 10.1016/j.physd.2013.07.017
- Parker, M. C. & Jeynes, C. A Relativistic Entropic Hamiltonian–Lagrangian Approach to the Entropy Production of Spiral Galaxies in Hyperbolic Spacetime. Universe vol. 7 325 (2021) – 10.3390/universe7090325
- Califano, F., Rashad, R. & Stramigioli, S. A differential geometric description of thermodynamics in continuum mechanics with application to Fourier–Navier–Stokes fluids. Physics of Fluids vol. 34 (2022) – 10.1063/5.0119517