About Dissipative and Pseudo Port-Hamiltonian Formulations of Irreversible Newtonian Compressible Flows
Authors
Luis A. Mora, Yann Le Gorrec, Denis Matignon, Hector Ramirez, Juan I. Yuz
Abstract
In this paper we consider the physical-based modeling of 3D and 2D Newtonian fluids including thermal effects in order to cope with the first and second principles of thermodynamics. To describe the energy fluxes of non-isentropic fluids we propose a pseudo port-Hamiltonian formulation, which includes the rate of irreversible entropy creation by heat flux. For isentropic fluids, the conversion of kinetic energy into heat by viscous friction is considered as an energy dissipation associated with the rotation and compression of the fluid. Then, a dissipative port-Hamiltonian formulation is derived for this class of fluids. In the 2D case we modify the vorticity operators in order to preserve the structure of the proposed models. Moreover, we show that a description for inviscid or irrotational fluids can be derived from the proposed models under the corresponding assumptions leading to a pseudo or dissipative port-Hamiltonian structures.
Keywords
Port-Hamiltonian systems; Compressible Fluids; Entropy; Newtonian fluids; Vorticity
Citation
- Journal: IFAC-PapersOnLine
- Year: 2020
- Volume: 53
- Issue: 2
- Pages: 11521–11526
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2020.12.604
- Note: 21st IFAC World Congress- Berlin, Germany, 11–17 July 2020
BibTeX
@article{Mora_2020,
title={{About Dissipative and Pseudo Port-Hamiltonian Formulations of Irreversible Newtonian Compressible Flows}},
volume={53},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2020.12.604},
number={2},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Mora, Luis A. and Gorrec, Yann Le and Matignon, Denis and Ramirez, Hector and Yuz, Juan I.},
year={2020},
pages={11521--11526}
}
References
- Altmann, R. & Schulze, P. A port-Hamiltonian formulation of the Navier–Stokes equations for reactive flows. Systems & Control Letters vol. 100 51–55 (2017) – 10.1016/j.sysconle.2016.12.005
- Bird, (2015)
- Cardoso-Ribeiro, F. L., Matignon, D. & Pommier-Budinger, V. A port-Hamiltonian model of liquid sloshing in moving containers and application to a fluid-structure system. Journal of Fluids and Structures vol. 69 402–427 (2017) – 10.1016/j.jfluidstructs.2016.12.007
- Landau, (1987)
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Macchelli, A., Le Gorrec, Y. & Ramírez, H. Boundary Energy-Shaping Control of an Ideal Compressible Isentropic Fluid in 1-D. IFAC-PapersOnLine vol. 50 5598–5603 (2017) – 10.1016/j.ifacol.2017.08.1105
- Matignon, D. & Hélie, T. A class of damping models preserving eigenspaces for linear conservative port-Hamiltonian systems. European Journal of Control vol. 19 486–494 (2013) – 10.1016/j.ejcon.2013.10.003
- Mora, L. A., Gorrec, Y. L., Matignon, D., Ramirez, H. & Yuz, J. I. About Dissipative and Pseudo Port-Hamiltonian Formulations of Irreversible Newtonian Compressible Flows. IFAC-PapersOnLine vol. 53 11521–11526 (2020) – 10.1016/j.ifacol.2020.12.604
- Mora, L. A., Yuz, J. I., Ramirez, H. & Gorrec, Y. L. A port-Hamiltonian Fluid-Structure Interaction Model for the Vocal folds . IFAC-PapersOnLine vol. 51 62–67 (2018) – 10.1016/j.ifacol.2018.06.016
- Öttinger, (2005)
- Ramirez, H., Maschke, B. & Sbarbaro, D. Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR. Chemical Engineering Science vol. 89 223–234 (2013) – 10.1016/j.ces.2012.12.002
- Swaters, (2000)
- Toledo, J., Wu, Y., Ramirez, H. & Gorrec, Y. L. Observer-Based State Feedback Controller for a class of Distributed Parameter Systems. IFAC-PapersOnLine vol. 52 114–119 (2019) – 10.1016/j.ifacol.2019.08.020
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- van der Schaft, (2014)
- Vu, Distributed and backstepping boundary controls to achieve IDA-PBC design. IFAC-PapersOnLine (2015)