Modelling and control of multi-energy systems: An irreversible port-Hamiltonian approach
Authors
Hector Ramirez, Bernhard Maschke, Daniel Sbarbaro
Abstract
In recent work a class of quasi port Hamiltonian system expressing the first and second principle of thermodynamics as a structural property has been defined: Irreversible port-Hamiltonian system. These systems are very much like port-Hamiltonian systems but differ in that their structure matrices are modulated by a non-linear function that precisely expresses the irreversibility of the system. In a first instance irreversible port-Hamiltonian systems are extended to encompass coupled mechanical and thermodynamical systems, leading to the definition of reversible–irreversible port Hamiltonian systems. In a second instance, the formalism is used to suggest a class of passivity based controllers for thermodynamic systems based on interconnection and Casimir functions. However, the extension of the Casimir method to irreversible port-Hamiltonian systems is not so straightforward due to the “interconnection obstacle”. The heat exchanger, a gas-piston system and the non-isothermal CSTR are used to illustrate the formalism.
Keywords
Irreversible thermodynamics; Port-Hamiltonian system; Control; Multi-energy systems
Citation
- Journal: European Journal of Control
- Year: 2013
- Volume: 19
- Issue: 6
- Pages: 513–520
- Publisher: Elsevier BV
- DOI: 10.1016/j.ejcon.2013.09.009
- Note: Lagrangian and Hamiltonian Methods for Modelling and Control
BibTeX
@article{Ramirez_2013,
title={{Modelling and control of multi-energy systems: An irreversible port-Hamiltonian approach}},
volume={19},
ISSN={0947-3580},
DOI={10.1016/j.ejcon.2013.09.009},
number={6},
journal={European Journal of Control},
publisher={Elsevier BV},
author={Ramirez, Hector and Maschke, Bernhard and Sbarbaro, Daniel},
year={2013},
pages={513--520}
}
References
- Alonso, A. A. & Ydstie, B. E. Stabilization of distributed systems using irreversible thermodynamics. Automatica vol. 37 1739–1755 (2001) – 10.1016/s0005-1098(01)00140-6
- Aris, (1989)
- Brogliato, (2007)
- Callen, (1985)
- Couenne, F., Jallut, C., Maschke, B., Breedveld, P. C. & Tayakout, M. Bond graph modelling for chemical reactors. Mathematical and Computer Modelling of Dynamical Systems vol. 12 159–174 (2006) – 10.1080/13873950500068823
- (2009)
- Dörfler, F., Johnsen, J. K. & Allgöwer, F. An introduction to interconnection and damping assignment passivity-based control in process engineering. Journal of Process Control vol. 19 1413–1426 (2009) – 10.1016/j.jprocont.2009.07.015
- Eberard, D., Maschke, B. M. & van der Schaft, A. J. An extension of Hamiltonian systems to the thermodynamic phase space: Towards a geometry of nonreversible processes. Reports on Mathematical Physics vol. 60 175–198 (2007) – 10.1016/s0034-4877(07)00024-9
- Favache, A., Dochain, D. & Maschke, B. An entropy-based formulation of irreversible processes based on contact structures. Chemical Engineering Science vol. 65 5204–5216 (2010) – 10.1016/j.ces.2010.06.019
- Favache, A. & Dochain, D. Thermodynamics and chemical systems stability: The CSTR case study revisited. Journal of Process Control vol. 19 371–379 (2009) – 10.1016/j.jprocont.2008.07.007
- Hangos, K. M., Bokor, J. & Szederkényi, G. Hamiltonian view on process systems. AIChE Journal vol. 47 1819–1831 (2001) – 10.1002/aic.690470813
- Hoang, H., Couenne, F., Jallut, C. & Le Gorrec, Y. The port Hamiltonian approach to modeling and control of Continuous Stirred Tank Reactors. Journal of Process Control vol. 21 1449–1458 (2011) – 10.1016/j.jprocont.2011.06.014
- Maschke, B. M. & van der Schaft, A. J. Port-Controlled Hamiltonian Systems: Modelling Origins and Systemtheoretic Properties. IFAC Proceedings Volumes vol. 25 359–365 (1992) – 10.1016/s1474-6670(17)52308-3
- Maschke, B. M., Van Der Schaft, A. J. & Breedveld, P. C. An intrinsic hamiltonian formulation of network dynamics: non-standard poisson structures and gyrators. Journal of the Franklin Institute vol. 329 923–966 (1992) – 10.1016/s0016-0032(92)90049-m
- Maschke, B., Ortega, R. & Van Der Schaft, A. J. Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation. IEEE Transactions on Automatic Control vol. 45 1498–1502 (2000) – 10.1109/9.871758
- Ortega, J.-P. & Planas-Bielsa, V. Dynamics on Leibniz manifolds. Journal of Geometry and Physics vol. 52 1–27 (2004) – 10.1016/j.geomphys.2004.01.002
- Ortega, Putting energy back in control. Control Systems Magazine (2001)
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Ortega, R., van der Schaft, A., Castanos, F. & Astolfi, A. Control by Interconnection and Standard Passivity-Based Control of Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 53 2527–2542 (2008) – 10.1109/tac.2008.2006930
- Oster, G. F. & Perelson, A. S. Chemical reaction dynamics. Archive for Rational Mechanics and Analysis vol. 55 230–274 (1974) – 10.1007/bf00281751
- Otero-Muras, I., Szederkényi, G., Alonso, A. A. & Hangos, K. M. Local dissipative Hamiltonian description of reversible reaction networks. Systems & Control Letters vol. 57 554–560 (2008) – 10.1016/j.sysconle.2007.12.003
- Ramírez, H., Sbarbaro, D. & Ortega, R. On the control of non-linear processes: An IDA–PBC approach. Journal of Process Control vol. 19 405–414 (2009) – 10.1016/j.jprocont.2008.06.018
- Ramirez, H., Maschke, B. & Sbarbaro, D. Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR. Chemical Engineering Science vol. 89 223–234 (2013) – 10.1016/j.ces.2012.12.002
- Sbarbaro, D. & Ortega, R. Averaging level control: An approach based on mass balance. Journal of Process Control vol. 17 621–629 (2007) – 10.1016/j.jprocont.2007.01.005
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- Van Der Schaft, A. J. & Maschke, B. M. On the Hamiltonian formulation of nonholonomic mechanical systems. Reports on Mathematical Physics vol. 34 225–233 (1994) – 10.1016/0034-4877(94)90038-8
- van der Schaft, A. J. & Maschke, B. M. Port-Hamiltonian Systems on Graphs. SIAM Journal on Control and Optimization vol. 51 906–937 (2013) – 10.1137/110840091