A novel energy-based modeling framework
Authors
Abstract
We introduce an energy-based model, which seems especially suited for constrained systems. The proposed model generalizes classical port-Hamiltonian input–state–output systems and exhibits similar properties such as energy dissipation as well as structure-preserving interconnection and Petrov–Galerkin projection. In terms of time discretization, the midpoint rule and discrete gradient methods are dissipation-preserving. Besides the verification of these properties, we present ten examples from different fields of application illustrating the great flexibility of the proposed framework.
Keywords
Energy-based modeling; Dissipation; Structure preservation; 37J06; 65P10; 65M60
Citation
- Journal: Mathematics of Control, Signals, and Systems
- Year: 2025
- Volume:
- Issue:
- Pages:
- Publisher: Springer Science and Business Media LLC
- DOI: 10.1007/s00498-024-00405-5
BibTeX
@article{Altmann_2025,
title={{A novel energy-based modeling framework}},
ISSN={1435-568X},
DOI={10.1007/s00498-024-00405-5},
journal={Mathematics of Control, Signals, and Systems},
publisher={Springer Science and Business Media LLC},
author={Altmann, R. and Schulze, P.},
year={2025}
}
References
- Altmann, R. & Maier, R. A Decoupling and Linearizing Discretization for Weakly Coupled Poroelasticity with Nonlinear Permeability. SIAM Journal on Scientific Computing vol. 44 B457–B478 (2022) – 10.1137/21m1413985
- Altmann, R., Mehrmann, V. & Unger, B. Port-Hamiltonian formulations of poroelastic network models. Mathematical and Computer Modelling of Dynamical Systems vol. 27 429–452 (2021) – 10.1080/13873954.2021.1975137
- Arnold, V. I. Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics (Springer New York, 1989). doi:10.1007/978-1-4757-2063-1 – 10.1007/978-1-4757-2063-1
- Altmann, R. & Schulze, P. A port-Hamiltonian formulation of the Navier–Stokes equations for reactive flows. Systems & Control Letters vol. 100 51–55 (2017) – 10.1016/j.sysconle.2016.12.005
- Altmann, R. & Zimmer, C. Dissipation-preserving discretization of the Cahn–Hilliard equation with dynamic boundary conditions. Applied Numerical Mathematics vol. 190 254–269 (2023) – 10.1016/j.apnum.2023.04.012
- Brugnoli, A., Alazard, D., Pommier-Budinger, V. & Matignon, D. Port-Hamiltonian formulation and symplectic discretization of plate models Part I: Mindlin model for thick plates. Applied Mathematical Modelling vol. 75 940–960 (2019) – 10.1016/j.apm.2019.04.035
- Biot, M. A. General Theory of Three-Dimensional Consolidation. Journal of Applied Physics vol. 12 155–164 (1941) – 10.1063/1.1712886
- Brugnoli, A., Rashad, R. & Stramigioli, S. Dual field structure-preserving discretization of port-Hamiltonian systems using finite element exterior calculus. Journal of Computational Physics vol. 471 111601 (2022) – 10.1016/j.jcp.2022.111601
- Benner, P. & Stykel, T. Model Order Reduction for Differential-Algebraic Equations: A Survey. Differential-Algebraic Equations Forum 107–160 (2017) doi:10.1007/978-3-319-46618-7_3 – 10.1007/978-3-319-46618-7_3
- Chaturantabut, S., Beattie, C. & Gugercin, S. Structure-Preserving Model Reduction for Nonlinear Port-Hamiltonian Systems. SIAM Journal on Scientific Computing vol. 38 B837–B865 (2016) – 10.1137/15m1055085
- Y Cao. Cao Y, Chen S, Meir AJ (2013) Analysis and numerical approximations of equations of nonlinear poroelasticity. Discrete Cont Dyn-B 18(5):1253–1273 (2013)
- Cahn, J. W. & Hilliard, J. E. Free Energy of a Nonuniform System. I. Interfacial Free Energy. The Journal of Chemical Physics vol. 28 258–267 (1958) – 10.1063/1.1744102
- Celledoni E, Høiseth EH (2017) Energy-preserving and passivity-consistent numerical discretization of port-Hamiltonian systems. ArXiv preprint 1706.08621v1
- Cardoso-Ribeiro, F. L., Matignon, D. & Pommier-Budinger, V. A port-Hamiltonian model of liquid sloshing in moving containers and application to a fluid-structure system. Journal of Fluids and Structures vol. 69 402–427 (2017) – 10.1016/j.jfluidstructs.2016.12.007
- Egger, H., Habrich, O. & Shashkov, V. On the Energy Stable Approximation of Hamiltonian and Gradient Systems. Computational Methods in Applied Mathematics vol. 21 335–349 (2020) – 10.1515/cmam-2020-0025
- Eidnes, S. Order theory for discrete gradient methods. BIT Numerical Mathematics vol. 62 1207–1255 (2022) – 10.1007/s10543-022-00909-z
- Eberard, D. & Maschke, B. Port hamiltonian systems extended to irreversible systems : The example of the heat conduction. IFAC Proceedings Volumes vol. 37 243–248 (2004) – 10.1016/s1474-6670(17)31230-2
- Elliott, C. M. & Songmu, Z. On the Cahn-Hilliard equation. Archive for Rational Mechanics and Analysis vol. 96 339–357 (1986) – 10.1007/bf00251803
- Frommer A, Günther M, Liljegren-Sailer B, Marheineke N (2024) Operator splitting for port-Hamiltonian systems. In: Burnecki K, Szwabiński J, Teuerle M (eds) Progress in Industrial Mathematics at ECMI 2023. Springer (To appear)
- Gear, C. W., Leimkuhler, B. & Gupta, G. K. Automatic integration of Euler-Lagrange equations with constraints. Journal of Computational and Applied Mathematics vols 12–13 77–90 (1985) – 10.1016/0377-0427(85)90008-1
- Gernandt, H., Haller, F. E., Reis, T. & Schaft, A. J. van der. Port-Hamiltonian formulation of nonlinear electrical circuits. Journal of Geometry and Physics vol. 159 103959 (2021) – 10.1016/j.geomphys.2020.103959
- Giesselmann J, Karsai A, Tscherpel T (2024) Energy-consistent Petrov–Galerkin time discretization of port-Hamiltonian systems. ArXiv preprint 2404.12480
- Grmela, M. & Öttinger, H. C. Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Physical Review E vol. 56 6620–6632 (1997) – 10.1103/physreve.56.6620
- Gonzalez, O. Time integration and discrete Hamiltonian systems. Journal of Nonlinear Science vol. 6 449–467 (1996) – 10.1007/bf02440162
- Gugercin, S., Polyuga, R. V., Beattie, C. & van der Schaft, A. Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems. Automatica vol. 48 1963–1974 (2012) – 10.1016/j.automatica.2012.05.052
- Hoang, H., Couenne, F., Jallut, C. & Le Gorrec, Y. The port Hamiltonian approach to modeling and control of Continuous Stirred Tank Reactors. Journal of Process Control vol. 21 1449–1458 (2011) – 10.1016/j.jprocont.2011.06.014
- Hauschild, S.-A. et al. Port-Hamiltonian Modeling of District Heating Networks. Differential-Algebraic Equations Forum 333–355 (2020) doi:10.1007/978-3-030-53905-4_11 – 10.1007/978-3-030-53905-4_11
- MW Hirsch. Hirsch MW, Smale S (1974) Differential Equations, Dynamical Systems, and Linear Algebra. Academic Press, New York (1974)
- Hairer, E. & Wanner, G. Solving Ordinary Differential Equations II. Springer Series in Computational Mathematics (Springer Berlin Heidelberg, 1996). doi:10.1007/978-3-642-05221-7 – 10.1007/978-3-642-05221-7
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1
- Kenzler, R. et al. Phase separation in confined geometries: Solving the Cahn–Hilliard equation with generic boundary conditions. Computer Physics Communications vol. 133 139–157 (2001) – 10.1016/s0010-4655(00)00159-4
- Kunkel, P. & Mehrmann, V. Differential-Algebraic Equations. EMS Textbooks in Mathematics (2006) doi:10.4171/017 – 10.4171/017
- P Kotyczka. Kotyczka P (2019) Numerical Methods for Distributed Parameter Port-Hamiltonian Systems. TUM. University Press, Munich (2019)
- Krishna, A. & Schiffer, J. A Port-Hamiltonian Approach to Modeling and Control of an Electro-Thermal Microgrid. IFAC-PapersOnLine vol. 54 287–293 (2021) – 10.1016/j.ifacol.2021.11.092
- Kinon, P. L., Thoma, T., Betsch, P. & Kotyczka, P. Discrete nonlinear elastodynamics in a port‐Hamiltonian framework. PAMM vol. 23 (2023) – 10.1002/pamm.202300144
- Lohmayer, M., Kotyczka, P. & Leyendecker, S. Exergetic port-Hamiltonian systems: modelling basics. Mathematical and Computer Modelling of Dynamical Systems vol. 27 489–521 (2021) – 10.1080/13873954.2021.1979592
- Liu, C. & Wu, H. An Energetic Variational Approach for the Cahn–Hilliard Equation with Dynamic Boundary Condition: Model Derivation and Mathematical Analysis. Archive for Rational Mechanics and Analysis vol. 233 167–247 (2019) – 10.1007/s00205-019-01356-x
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM Journal on Control and Optimization vol. 43 743–767 (2004) – 10.1137/s0363012903429530
- Mehrmann, V. & Morandin, R. Structure-preserving discretization for port-Hamiltonian descriptor systems. 2019 IEEE 58th Conference on Decision and Control (CDC) 6863–6868 (2019) doi:10.1109/cdc40024.2019.9030180 – 10.1109/cdc40024.2019.9030180
- Morandin R (2024) Modeling and numerical treatment of port-Hamiltonian descriptor systems. PhD thesis, Technische Universität Berlin
- McLachlan, R. I., Quispel, G. R. W. & Robidoux, N. Geometric integration using discrete gradients. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences vol. 357 1021–1045 (1999) – 10.1098/rsta.1999.0363
- Mehrmann, V. & Unger, B. Control of port-Hamiltonian differential-algebraic systems and applications. Acta Numerica vol. 32 395–515 (2023) – 10.1017/s0962492922000083
- Maschke, B. M. & van der Schaft, A. J. Port-Controlled Hamiltonian Systems: Modelling Origins and Systemtheoretic Properties. IFAC Proceedings Volumes vol. 25 359–365 (1992) – 10.1016/s1474-6670(17)52308-3
- Mehrmann, V. & van der Schaft, A. Differential–algebraic systems with dissipative Hamiltonian structure. Mathematics of Control, Signals, and Systems vol. 35 541–584 (2023) – 10.1007/s00498-023-00349-2
- Zwart, H. & Mehrmann, V. Abstract Dissipative Hamiltonian Differential-Algebraic Equations Are Everywhere. DAE Panel vol. 2 (2024) – 10.52825/dae-p.v2i.957
- Payen, G., Matignon, D. & Haine, G. Modelling and structure-preserving discretization of Maxwell’s equations as port-Hamiltonian system. IFAC-PapersOnLine vol. 53 7581–7586 (2020) – 10.1016/j.ifacol.2020.12.1355
- Polyuga, R. V. & van der Schaft, A. J. Effort- and flow-constraint reduction methods for structure preserving model reduction of port-Hamiltonian systems. Systems & Control Letters vol. 61 412–421 (2012) – 10.1016/j.sysconle.2011.12.008
- Rashad, R., Califano, F., Schuller, F. P. & Stramigioli, S. Port-Hamiltonian modeling of ideal fluid flow: Part I. Foundations and kinetic energy. Journal of Geometry and Physics vol. 164 104201 (2021) – 10.1016/j.geomphys.2021.104201
- Rashad, R., Califano, F., van der Schaft, A. J. & Stramigioli, S. Twenty years of distributed port-Hamiltonian systems: a literature review. IMA Journal of Mathematical Control and Information vol. 37 1400–1422 (2020) – 10.1093/imamci/dnaa018
- Renardy, M. Mathematical Analysis of Viscoelastic Flows. Annual Review of Fluid Mechanics vol. 21 21–34 (1989) – 10.1146/annurev.fl.21.010189.000321
- Ramirez, H., Maschke, B. & Sbarbaro, D. Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR. Chemical Engineering Science vol. 89 223–234 (2013) – 10.1016/j.ces.2012.12.002
- Schulze P (2024) Structure-preserving time discretization of port-Hamiltonian systems via discrete gradient pairs. In: Burnecki K, Szwabiński J, Teuerle M (eds) Progress in Industrial Mathematics at ECMI 2023. Springer (To appear)
- Showalter, R. E. Diffusion in Poro-Elastic Media. Journal of Mathematical Analysis and Applications vol. 251 310–340 (2000) – 10.1006/jmaa.2000.7048
- Schaller, M., Philipp, F., Faulwasser, T., Worthmann, K. & Maschke, B. Control of port-Hamiltonian systems with minimal energy supply. European Journal of Control vol. 62 33–40 (2021) – 10.1016/j.ejcon.2021.06.017
- Schaft, A. J. Port-Hamiltonian Systems: Network Modeling and Control of Nonlinear Physical Systems. Advanced Dynamics and Control of Structures and Machines 127–167 (2004) doi:10.1007/978-3-7091-2774-2_9 – 10.1007/978-3-7091-2774-2_9
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- van der Schaft, A. & Maschke, B. Dirac and Lagrange Algebraic Constraints in Nonlinear Port-Hamiltonian Systems. Vietnam Journal of Mathematics vol. 48 929–939 (2020) – 10.1007/s10013-020-00419-x
- Vu, N. M. T., Lefèvre, L. & Maschke, B. A structured control model for the thermo-magneto-hydrodynamics of plasmas in tokamaks. Mathematical and Computer Modelling of Dynamical Systems vol. 22 181–206 (2016) – 10.1080/13873954.2016.1154874
- Voß, T. & Scherpen, J. M. A. Port-Hamiltonian Modeling of a Nonlinear Timoshenko Beam with Piezo Actuation. SIAM Journal on Control and Optimization vol. 52 493–519 (2014) – 10.1137/090774598
- Wang, L., Maschke, B. & van der Schaft, A. Port-Hamiltonian modeling of non-isothermal chemical reaction networks. Journal of Mathematical Chemistry vol. 56 1707–1727 (2018) – 10.1007/s10910-018-0882-9