On the Energy Stable Approximation of Hamiltonian and Gradient Systems
Authors
Herbert Egger, Oliver Habrich, Vsevolod Shashkov
Abstract
A general framework for the numerical approximation of evolution problems is presented that allows to preserve an underlying dissipative Hamiltonian or gradient structure exactly. The approach relies on rewriting the evolution problem in a particular form that complies with the underlying geometric structure. The Galerkin approximation of a corresponding variational formulation in space then automatically preserves this structure which allows to deduce important properties for appropriate discretization schemes including projection based model order reduction. We further show that the underlying structure is preserved also under time discretization by a Petrov–Galerkin approach. The presented framework is rather general and allows the numerical approximation of a wide range of applications, including nonlinear partial differential equations and port-Hamiltonian systems. Some examples will be discussed for illustration of our theoretical results, and connections to other discretization approaches will be highlighted.
Citation
- Journal: Computational Methods in Applied Mathematics
- Year: 2021
- Volume: 21
- Issue: 2
- Pages: 335–349
- Publisher: Walter de Gruyter GmbH
- DOI: 10.1515/cmam-2020-0025
BibTeX
@article{Egger_2020,
title={{On the Energy Stable Approximation of Hamiltonian and Gradient Systems}},
volume={21},
ISSN={1609-9389},
DOI={10.1515/cmam-2020-0025},
number={2},
journal={Computational Methods in Applied Mathematics},
publisher={Walter de Gruyter GmbH},
author={Egger, Herbert and Habrich, Oliver and Shashkov, Vsevolod},
year={2020},
pages={335--349}
}
References
- Maboudi Afkham, B. & Hesthaven, J. S. Structure-Preserving Model-Reduction of Dissipative Hamiltonian Systems. Journal of Scientific Computing vol. 81 3–21 (2018) – 10.1007/s10915-018-0653-6
- Akrivis, G., Makridakis, C. & Nochetto, R. H. Galerkin and Runge–Kutta methods: unified formulation, a posteriori error estimates and nodal superconvergence. Numerische Mathematik vol. 118 429–456 (2011) – 10.1007/s00211-011-0363-6
- Rodríguez, A. A. & Valli, A. Selected applications. MS&A 275–307 (2010) doi:10.1007/978-88-470-1506-7_9 – 10.1007/978-88-470-1506-7_9
- Antoulas, A. C. Approximation of Large-Scale Dynamical Systems. (2005) doi:10.1137/1.9780898718713 – 10.1137/1.9780898718713
- Beattie, C. & Gugercin, S. Interpolatory projection methods for structure-preserving model reduction. Systems & Control Letters vol. 58 225–232 (2009) – 10.1016/j.sysconle.2008.10.016
- Beattie, C. & Gugercin, S. Structure-preserving model reduction for nonlinear port-Hamiltonian systems. IEEE Conference on Decision and Control and European Control Conference 6564–6569 (2011) doi:10.1109/cdc.2011.6161504 – 10.1109/cdc.2011.6161504
- Dimension Reduction of Large-Scale Systems. Lecture Notes in Computational Science and Engineering (Springer Berlin Heidelberg, 2005). doi:10.1007/3-540-27909-1 – 10.1007/3-540-27909-1
- Celledoni, E., Eidnes, S., Owren, B. & Ringholm, T. Dissipative Numerical Schemes on Riemannian Manifolds with Applications to Gradient Flows. SIAM Journal on Scientific Computing vol. 40 A3789–A3806 (2018) – 10.1137/18m1190628
- Celledoni, E., Eidnes, S., Owren, B. & Ringholm, T. Energy-preserving methods on Riemannian manifolds. Mathematics of Computation vol. 89 699–716 (2019) – 10.1090/mcom/3470
- E. Celledoni and E. H. Hoiseth, Energy-preserving and passivity-consistent numerical discretization of port-Hamiltonian systems, preprint (2017), https://arxiv.org/abs/1706.08621.
- Chaturantabut, S., Beattie, C. & Gugercin, S. Structure-Preserving Model Reduction for Nonlinear Port-Hamiltonian Systems. SIAM Journal on Scientific Computing vol. 38 B837–B865 (2016) – 10.1137/15m1055085
- Cohen, D. & Hairer, E. Linear energy-preserving integrators for Poisson systems. BIT Numerical Mathematics vol. 51 91–101 (2011) – 10.1007/s10543-011-0310-z
- Egger, H. Structure preserving approximation of dissipative evolution problems. Numerische Mathematik vol. 143 85–106 (2019) – 10.1007/s00211-019-01050-w
- Eich-Soellner, E. & Führer, C. Numerical Methods in Multibody Dynamics. European Consortium for Mathematics in Industry (Vieweg+Teubner Verlag, 1998). doi:10.1007/978-3-663-09828-7 – 10.1007/978-3-663-09828-7
- Elliott, C. M. The Cahn-Hilliard Model for the Kinetics of Phase Separation. Mathematical Models for Phase Change Problems 35–73 (1989) doi:10.1007/978-3-0348-9148-6_3 – 10.1007/978-3-0348-9148-6_3
- Ern, A. & Guermond, J.-L. Theory and Practice of Finite Elements. Applied Mathematical Sciences (Springer New York, 2004). doi:10.1007/978-1-4757-4355-5 – 10.1007/978-1-4757-4355-5
- Furihata, D. & Matsuo, T. Discrete Variational Derivative Method. (2010) doi:10.1201/b10387 – 10.1201/b10387
- Gear, C. W., Leimkuhler, B. & Gupta, G. K. Automatic integration of Euler-Lagrange equations with constraints. Journal of Computational and Applied Mathematics vols 12–13 77–90 (1985) – 10.1016/0377-0427(85)90008-1
- Gonzalez, O. Time integration and discrete Hamiltonian systems. Journal of Nonlinear Science vol. 6 449–467 (1996) – 10.1007/bf02440162
- E. Hairer, Energy-preserving variant of collocation methods, JNAIAM. J. Numer. Anal. Ind. Appl. Math. 5 (2010), no. 1–2, 73–84.
- Hairer, E. & Lubich, C. Energy-diminishing integration of gradient systems. IMA Journal of Numerical Analysis vol. 34 452–461 (2013) – 10.1093/imanum/drt031
- Hairer, E., Roche, M. & Lubich, C. The Numerical Solution of Differential-Algebraic Systems by Runge-Kutta Methods. Lecture Notes in Mathematics (Springer Berlin Heidelberg, 1989). doi:10.1007/bfb0093947 – 10.1007/bfb0093947
- E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration, Springer Ser. Comput. Math. 31, Springer, Heidelberg, 2010.
- Kunkel, P. & Mehrmann, V. Differential-Algebraic Equations. EMS Textbooks in Mathematics (2006) doi:10.4171/017 – 10.4171/017
- Leimkuhler, B. & Reich, S. Simulating Hamiltonian Dynamics. (2005) doi:10.1017/cbo9780511614118 – 10.1017/cbo9780511614118
- McLachlan, R. I., Quispel, G. R. W. & Robidoux, N. Geometric integration using discrete gradients. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences vol. 357 1021–1045 (1999) – 10.1098/rsta.1999.0363
- Monk, P. Finite Element Methods for Maxwell’s Equations. (2003) doi:10.1093/acprof:oso/9780198508885.001.0001 – 10.1093/acprof:oso/9780198508885.001.0001
- Polyuga, R. V. Discussion on: “Passivity and Structure Preserving Order Reduction of Linear Port-Hamiltonian Systems Using Krylov Subspaces”. European Journal of Control vol. 16 407–409 (2010) – 10.1016/s0947-3580(10)70672-5
- K. Strehmel and R. Weiner, Numerik gewöhnlicher Differentialgleichungen, Teubner Math. Textb., B. G. Teubner, Stuttgart, 1995.
- V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, 2nd ed., Springer Ser. Comput. Math. 25, Springer, Berlin, 2006.