A Port-Hamiltonian Approach to Modeling and Control of an Electro-Thermal Microgrid
Authors
Ajay Krishna, Johannes Schiffer
Abstract
We address the problems of modeling and controlling multi-energy microgrids (meMGs) composed of an electrical and a thermal system, which are connected via heat pumps (HPs). At first, we model the individual subsystems in a port-Hamiltonian (pH) framework. Then, by exploiting the structural properties of pH systems, we interconnect the subsystems in a passive manner and show that the overall meMG is shifted passive with respect to the control input-output mapping. We then use this property to propose a distributed passivity based-control (PBC) that addresses frequency and temperature regulation by utilizing the resources in the meMG in a proportional fashion and renders the closed-loop equilibrium asymptotically stable.
Keywords
Passivity-based control; port-Hamiltonian systems; multi-energy microgrids; district heating systems; distributed control
Citation
- Journal: IFAC-PapersOnLine
- Year: 2021
- Volume: 54
- Issue: 19
- Pages: 287–293
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2021.11.092
- Note: 7th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2021- Berlin, Germany, 11-13 October 2021
BibTeX
@article{Krishna_2021,
title={{A Port-Hamiltonian Approach to Modeling and Control of an Electro-Thermal Microgrid}},
volume={54},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2021.11.092},
number={19},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Krishna, Ajay and Schiffer, Johannes},
year={2021},
pages={287--293}
}
References
- Awad, B., Chaudry, M., Jianzhong Wu & Jenkins, N. Integrated optimal power flow for electric power and heat in a microgrid. IET Conference Publications 869–869 (2009) doi:10.1049/cp.2009.1037 – 10.1049/cp.2009.1037
- Bidram, A., Davoudi, A., Lewis, F. L. & Qu, Z. Secondary control of microgrids based on distributed cooperative control of multi‐agent systems. IET Generation, Transmission & Distribution vol. 7 822–831 (2013) – 10.1049/iet-gtd.2012.0576
- Fiaz, S., Zonetti, D., Ortega, R., Scherpen, J. M. A. & van der Schaft, A. J. A port-Hamiltonian approach to power network modeling and analysis. European Journal of Control vol. 19 477–485 (2013) – 10.1016/j.ejcon.2013.09.002
- Geidl, M. & Andersson, G. Optimal Power Flow of Multiple Energy Carriers. IEEE Transactions on Power Systems vol. 22 145–155 (2007) – 10.1109/tpwrs.2006.888988
- Guerrero, J. M., GarciadeVicuna, L., Matas, J., Castilla, M. & Miret, J. Output Impedance Design of Parallel-Connected UPS Inverters With Wireless Load-Sharing Control. IEEE Transactions on Industrial Electronics vol. 52 1126–1135 (2005) – 10.1109/tie.2005.851634
- Haddad, (2019)
- Hatziargyriou, N., Asano, H., Iravani, R. & Marnay, C. Microgrids. IEEE Power and Energy Magazine vol. 5 78–94 (2007) – 10.1109/mpae.2007.376583
- Hauschild, S.-A. et al. Port-Hamiltonian Modeling of District Heating Networks. Differential-Algebraic Equations Forum 333–355 (2020) doi:10.1007/978-3-030-53905-4_11 – 10.1007/978-3-030-53905-4_11
- Horn, (2012)
- Jayawardhana, B., Ortega, R., García-Canseco, E. & Castaños, F. Passivity of nonlinear incremental systems: Application to PI stabilization of nonlinear RLC circuits. Systems & Control Letters vol. 56 618–622 (2007) – 10.1016/j.sysconle.2007.03.011
- Kim, Y.-J., Norford, L. K. & Kirtley, J. L. Modeling and Analysis of a Variable Speed Heat Pump for Frequency Regulation Through Direct Load Control. IEEE Transactions on Power Systems vol. 30 397–408 (2015) – 10.1109/tpwrs.2014.2319310
- Kundur, (1994)
- Lee, (2019)
- Lund, (2017)
- Mancarella, Evaluation of the impact of electric heat pumps and distributed chp on lv networks. IEEE Power Tech. (2011)
- Manias, (2017)
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Ramirez, H., Maschke, B. & Sbarbaro, D. Modelling and control of multi-energy systems: An irreversible port-Hamiltonian approach. European Journal of Control vol. 19 513–520 (2013) – 10.1016/j.ejcon.2013.09.009
- Schiffer, J. & Dorfler, F. On stability of a distributed averaging PI frequency and active power controlled differential-algebraic power system model. 2016 European Control Conference (ECC) 1487–1492 (2016) doi:10.1109/ecc.2016.7810500 – 10.1109/ecc.2016.7810500
- Schiffer, J., Goldin, D., Raisch, J. & Sezi, T. Synchronization of droop-controlled microgrids with distributed rotational and electronic generation. 52nd IEEE Conference on Decision and Control 2334–2339 (2013) doi:10.1109/cdc.2013.6760229 – 10.1109/cdc.2013.6760229
- Schiffer, J., Ortega, R., Astolfi, A., Raisch, J. & Sezi, T. Conditions for stability of droop-controlled inverter-based microgrids. Automatica vol. 50 2457–2469 (2014) – 10.1016/j.automatica.2014.08.009
- Scholten, T., De Persis, C. & Tesi, P. Modeling and Control of Heat Networks With Storage: The Single-Producer Multiple-Consumer Case. IEEE Transactions on Control Systems Technology vol. 25 414–428 (2017) – 10.1109/tcst.2016.2565386
- Stegink, T. W., De Persis, C. & Van Der Schaft, A. J. An energy-based analysis of reduced-order models of (networked) synchronous machines. Mathematical and Computer Modelling of Dynamical Systems vol. 25 1–39 (2019) – 10.1080/13873954.2019.1566265
- Stegink, T., De Persis, C. & van der Schaft, A. A Unifying Energy-Based Approach to Stability of Power Grids With Market Dynamics. IEEE Transactions on Automatic Control vol. 62 2612–2622 (2017) – 10.1109/tac.2016.2613901
- Strehle, F. et al. Towards Port-Hamiltonian Modeling of Multi-Carrier Energy Systems: A Case Study for a Coupled Electricity and Gas Distribution System. IFAC-PapersOnLine vol. 51 463–468 (2018) – 10.1016/j.ifacol.2018.03.078
- van der Schaft, (2000)
- Vandermeulen, A., van der Heijde, B. & Helsen, L. Controlling district heating and cooling networks to unlock flexibility: A review. Energy vol. 151 103–115 (2018) – 10.1016/j.energy.2018.03.034
- Vladimarsson, District heat distribution networks. United Nations University Geothermal Training Programme (2014)