In this paper we study the representation of partial differential equations (PDEs) as abstract differential-algebraic equations (DAEs) with dissipative Hamiltonian structure (adHDAEs). We show that these systems not only arise when there are constraints coming from the underlying physics, but many standard PDE models can be seen as an adHDAE on an extended state space. This reflects the fact that models often include closure relations and structural properties. We present a unifying operator theoretic approach to analyze the properties of such operator equations and illustrate this by several applications.
@article{Zwart_2024,title={{Abstract Dissipative Hamiltonian Differential-Algebraic Equations Are Everywhere}},volume={2},ISSN={2939-9084},DOI={10.52825/dae-p.v2i.957},journal={DAE Panel},publisher={TIB Open Publishing},author={Zwart, Hans and Mehrmann, Volker},year={2024}}
Arendt, W., Batty, C. J. K., Hieber, M. & Neubrander, F. Vector-Valued Laplace Transforms and Cauchy Problems. (Springer Basel, 2011). doi:10.1007/978-3-0348-0087-7 – 10.1007/978-3-0348-0087-7
Bartel, A., Clemens, M., Günther, M., Jacob, B. & Reis, T. Port-Hamiltonian Systems’ Modelling in Electrical Engineering. Mathematics in Industry 133–143 (2024) doi:10.1007/978-3-031-54517-7_15 – 10.1007/978-3-031-54517-7_15
Brenan, K. E., Campbell, S. L. & Petzold, L. R. Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. (1995) doi:10.1137/1.9781611971224 – 10.1137/1.9781611971224
Curtain, R. & Zwart, H. Classes of Semigroups. Texts in Applied Mathematics 71–150 (2020) doi:10.1007/978-1-0716-0590-5_3 – 10.1007/978-1-0716-0590-5_3
Curtain, R. F. Invariance Concepts in Infinite Dimensions. SIAM Journal on Control and Optimization vol. 24 1009–1030 (1986) – 10.1137/0324059
Curtain, R. F. & Zwart, H. An Introduction to Infinite-Dimensional Linear Systems Theory. Texts in Applied Mathematics (Springer New York, 1995). doi:10.1007/978-1-4612-4224-6 – 10.1007/978-1-4612-4224-6
Egger, H. & Kugler, T. Damped wave systems on networks: exponential stability and uniform approximations. Numerische Mathematik vol. 138 839–867 (2017) – 10.1007/s00211-017-0924-4
Emmrich, E. & Mehrmann, V. Operator Differential-Algebraic Equations Arising in Fluid Dynamics. Computational Methods in Applied Mathematics vol. 13 443–470 (2013) – 10.1515/cmam-2013-0018
Erbay, M., Jacob, B., Morris, K., Reis, T. & Tischendorf, C. Index Concepts for Linear Differential-Algebraic Equations in Infinite Dimensions. DAE Panel vol. 2 (2024) – 10.52825/dae-p.v2i.2514
Gorbachuk, V. I. & Gorbachuk, M. L. Boundary Value Problems for Operator Differential Equations. (Springer Netherlands, 1991). doi:10.1007/978-94-011-3714-0 – 10.1007/978-94-011-3714-0
Hackbusch, W. Elliptic Differential Equations. Springer Series in Computational Mathematics (Springer Berlin Heidelberg, 2017). doi:10.1007/978-3-662-54961-2 – 10.1007/978-3-662-54961-2
Hairer, E. & Wanner, G. Examples of Stiff Equations. Springer Series in Computational Mathematics 2–14 (1996) doi:10.1007/978-3-642-05221-7_1 – 10.1007/978-3-642-05221-7_1
Jacob, B. & Morris, K. On Solvability of Dissipative Partial Differential-Algebraic Equations. IEEE Control Systems Letters vol. 6 3188–3193 (2022) – 10.1109/lcsys.2022.3183479
Kunkel, P. & Mehrmann, V. Differential-Algebraic Equations. EMS Textbooks in Mathematics (2006) doi:10.4171/017 – 10.4171/017
Lamour, R., März, R. & Tischendorf, C. Differential-Algebraic Equations: A Projector Based Analysis. (Springer Berlin Heidelberg, 2013). doi:10.1007/978-3-642-27555-5 – 10.1007/978-3-642-27555-5
Miyadera, I. Nonlinear Semigroups. Translations of Mathematica Monographs (1992) doi:10.1090/mmono/109 – 10.1090/mmono/109
Paige, C. C. & Wei, M. History and generality of the CS decomposition. Linear Algebra and its Applications vols 208–209 303–326 (1994) – 10.1016/0024-3795(94)90446-4
Schwenninger, F. L. & Zwart, H. Generators with a closure relation. Operators and Matrices 157–165 (2014) doi:10.7153/oam-08-08 – 10.7153/oam-08-08
Staffans, O. J. & Weiss, G. A Physically Motivated Class of Scattering Passive Linear Systems. SIAM Journal on Control and Optimization vol. 50 3083–3112 (2012) – 10.1137/110846403
Geometric Theory for Infinite Dimensional Systems. Lecture Notes in Control and Information Sciences (Springer-Verlag, 1989). doi:10.1007/bfb0044353 – 10.1007/bfb0044353