Port-Hamiltonian Systems: Network Modeling and Control of Nonlinear Physical Systems
Authors
Abstract
It is shown how port-based modeling of lumped-parameter complex physical systems (multi-body systems, electrical circuits, electromechanical systems,..) naturally leads to a geometrically defined class of systems, called port-Hamiltonian systems. These are Hamiltonian systems defined with respect to a power-conserving geometric structure capturing the basic interconnection laws, and a Hamiltonian function given by the total stored energy. The structural properties of port-Hamiltonian systems are discussed, in particular the existence of Casimir functions and its implications for stability and stabilization. Furthermore it is shown how passivity-based control results from interconnecting the plant port-Hamiltonian system with a controller port-Hamiltonian system, leading to a closed-loop port-Hamiltonian system. Finally, extensions to the distributed-parameter case are provided by formulating boundary control systems as infinite-dimensional port-Hamiltonian systems.
Keywords
Hamiltonian System; Multibody System; Kinematic Constraint; Dirac Structure; Bond Graph
Citation
- ISBN: 9783211228678
- Publisher: Springer Vienna
- DOI: 10.1007/978-3-7091-2774-2_9
BibTeX
@inbook{Schaft_2004,
title={{Port-Hamiltonian Systems: Network Modeling and Control of Nonlinear Physical Systems}},
ISBN={9783709127742},
DOI={10.1007/978-3-7091-2774-2_9},
booktitle={{Advanced Dynamics and Control of Structures and Machines}},
publisher={Springer Vienna},
author={Schaft, A. J.},
year={2004},
pages={127--167}
}
References
- Bloch, A. M., Leonard, N. E. & Marsden, J. E. Matching and stabilization by the method of controlled Lagrangians. Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171) vol. 2 1446–1451 – 10.1109/cdc.1998.758490
- AM Bloch, G. Ferreyra, R. Gardner, H. Hermes, and H. Sussmann, editors, Symposia in Pure Mathematics, Differential Geometry and Control Theory, volume 64, pages 103-117. AMS (1999)
- Courant, T. J. Dirac manifolds. Trans. Amer. Math. Soc. 319, 631–661 (1990) – 10.1090/s0002-9947-1990-0998124-1
- Variational and Hamiltonian Control Systems. Lecture Notes in Control and Information Sciences (Springer Berlin Heidelberg, 1987). doi:10.1007/bfb0042858 – 10.1007/bfb0042858
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM J. Control Optim. 37, 54–91 (1998) – 10.1137/s0363012996312039
- I Dorfman, Dirac Structures and Integrability of Nonlinear Evolution Equations (1993)
- Fattorini, H. O. Boundary Control Systems. SIAM Journal on Control 6, 349–385 (1968) – 10.1137/0306025
- Fujimoto, K. & Sugie, T. Stabilization of a class of Hamiltonian systems with nonholonomic constraints via canonical transformations. 1999 European Control Conference (ECC) 1076–1081 (1999) doi:10.23919/ecc.1999.7099451 – 10.23919/ecc.1999.7099451
- G Golo, Proc. 41st IEEE Conf. Decision and Control (2002)
- G Golo, Nonlinear and Hybrid Systems in Automotive Control (2003)
- G Golo, A. Astolfi, F. Gordillo, and A.J. van der Schaft, editors, Proc. 2nd IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control, pages 169-174, Sevilla (2003)
- Hill, D. & Moylan, P. The stability of nonlinear dissipative systems. IEEE Trans. Automat. Contr. 21, 708–711 (1976) – 10.1109/tac.1976.1101352
- RS Ingarden, Classical Electrodynamics. PWN-Polish Sc. Publ. (1985)
- Isidori, A. Nonlinear Control Systems. Communications and Control Engineering (Springer London, 1995). doi:10.1007/978-1-84628-615-5 – 10.1007/978-1-84628-615-5
- Marsden, J. E. & Ratiu, T. S. Introduction to Mechanics and Symmetry. Texts in Applied Mathematics (Springer New York, 1994). doi:10.1007/978-1-4612-2682-6 – 10.1007/978-1-4612-2682-6
- Maschke, B., Ortega, R. & Van Der Schaft, A. J. Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation. IEEE Trans. Automat. Contr. 45, 1498–1502 (2000) – 10.1109/9.871758
- BM Maschke, Proc. ASME Int. Mech. Engg. Congress, volume 55 (1994)
- Maschke, B. M. & van der Schaft, A. J. Interconnection of systems: the network paradigm. Proceedings of 35th IEEE Conference on Decision and Control vol. 1 207–212 – 10.1109/cdc.1996.574297
- Maschke, B. M. J. & van der Schaft, A. J. Interconnected mechanical systems, part II: the dynamics of spatial mechanical networks. Modelling and Control of Mechanical Systems 17–30 (1997) doi:10.1142/9781848160873_0002 – 10.1142/9781848160873_0002
- Maschke, B. M. & van der Schaft, A. Hamiltonian representation of distributed parameter systems with boundary energy flow. Lecture Notes in Control and Information Sciences 137–142 (2001) doi:10.1007/bfb0110297 – 10.1007/bfb0110297
- BM Maschke, N.E. Leonard and R. Ortega, editors, IFAC Workshop on Lagrangian and Hamiltonian methods for nonlinear control, pages 2838. Princeton University (2000)
- Maschke, B. M., Van Der Schaft, A. J. & Breedveld, P. C. An intrinsic hamiltonian formulation of network dynamics: non-standard poisson structures and gyrators. Journal of the Franklin Institute 329, 923–966 (1992) – 10.1016/s0016-0032(92)90049-m
- Maschke, B. M., van der Schaft, A. J. & Breedveld, P. C. An intrinsic Hamiltonian formulation of the dynamics of LC-circuits. IEEE Trans. Circuits Syst. I 42, 73–82 (1995) – 10.1109/81.372847
- Nijmeijer, H. & van der Schaft, A. Nonlinear Dynamical Control Systems. (Springer New York, 1990). doi:10.1007/978-1-4757-2101-0 – 10.1007/978-1-4757-2101-0
- Olver, P. J. Applications of Lie Groups to Differential Equations. Graduate Texts in Mathematics (Springer New York, 1993). doi:10.1007/978-1-4612-4350-2 – 10.1007/978-1-4612-4350-2
- Ortega, R., Loría, A., Nicklasson, P. J. & Sira-Ramírez, H. Passivity-Based Control of Euler-Lagrange Systems. Communications and Control Engineering (Springer London, 1998). doi:10.1007/978-1-4471-3603-3 – 10.1007/978-1-4471-3603-3
- Putting energy back in control. IEEE Control Syst. 21, 18–33 (2001) – 10.1109/37.915398
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- H Rodriguez, Proc. 40th IEEE Conf. on Decision and Control (2001)
- Schlacher, K. & Kugi, A. Control of mechanical structures by piezoelectric actuators and sensors. Lecture Notes in Control and Information Sciences 275–292 (1999) doi:10.1007/1-84628-577-1_15 – 10.1007/1-84628-577-1_15
- S Stramigioli, From Differentiable Manifolds to Interactive Robot Control (1998)
- S Stramigioli, Proc. (to appear) Symposium Commemorating the Legacy, Work and Life of Sir R.S. Ball, J. Duffy and H. Lipkin organizers, University of Cambridge, Trinity College, Cambridge, U.K., July (2000)
- Takegaki, M. & Arimoto, S. A New Feedback Method for Dynamic Control of Manipulators. Journal of Dynamic Systems, Measurement, and Control 103, 119–125 (1981) – 10.1115/1.3139651
- AJ Schaft van der, System Theoretic Properties of Physical Systems. CWI Tract (1984)
- van der Schaft, A. J. Stabilization of Hamiltonian systems. Nonlinear Analysis: Theory, Methods & Applications 10, 1021–1035 (1986) – 10.1016/0362-546x(86)90086-6
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- van der Schaft, A. J., Dalsmo, M. & Maschke, B. M. Mathematical structures in the network representation of energy-conserving physical systems. Proceedings of 35th IEEE Conference on Decision and Control vol. 1 201–206 – 10.1109/cdc.1996.574296
- Van Der Schaft, A. J. & Maschke, B. M. On the Hamiltonian formulation of nonholonomic mechanical systems. Reports on Mathematical Physics 34, 225–233 (1994) – 10.1016/0034-4877(94)90038-8
- AJ Schaft van der, Archiv für Elektronik and Übertragungstechnik (1995)
- AJ Schaft van der, Proc. 3rd IFAC NOLCOS 95 (1995)
- AJ Schaft van der, A. Astolfi, D.J.N Lime-beer, C. Melchiorri, A. Tornambè, and R.B. Vinter, editors, Modelling and Control of Mechanical Systems, pages 1-15. Imperial College Press (1997)
- AJ Schaft van der, Proc. 40th IEEE Conf. on Decision and Control (2001)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics 42, 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Weinstein, A. The local structure of Poisson manifolds. J. Differential Geom. 18, (1983) – 10.4310/jdg/1214437787
- Willems, J. C. Dissipative dynamical systems part I: General theory. Arch. Rational Mech. Anal. 45, 321–351 (1972) – 10.1007/bf00276493