Energy-consistent Petrov–Galerkin time discretization of port-Hamiltonian systems
Authors
Jan Giesselmann, Attila Karsai, Tabea Tscherpel
Abstract
For a general class of nonlinear port-Hamiltonian systems we develop a high-order time discretization scheme with certain structure preservation properties. The finite or infinite-dimensional system under consideration possesses a Hamiltonian function, which represents an energy in the system and is conserved or dissipated along solutions. For infinite-dimensional systems this structure is preserved under suitable Galerkin discretization in space. The numerical scheme is energy-consistent in the sense that the Hamiltonian of the approximate solutions at time grid points behaves accordingly. This structure preservation property is achieved by specific design of a continuous Petrov–Galerkin (cPG) method in time. It coincides with standard cPG methods in special cases, in which the latter are energy-consistent. Examples of port-Hamiltonian ODEs and PDEs are presented to visualize the framework. In numerical experiments the energy consistency is verified and the convergence behavior is investigated.
Citation
- Journal: The SMAI Journal of computational mathematics
- Year: 2025
- Volume: 11
- Issue:
- Pages: 335–367
- Publisher: Cellule MathDoc/Centre Mersenne
- DOI: 10.5802/smai-jcm.127
BibTeX
@article{Giesselmann_2025,
title={{Energy-consistent Petrov–Galerkin time discretization of port-Hamiltonian systems}},
volume={11},
ISSN={2426-8399},
DOI={10.5802/smai-jcm.127},
journal={The SMAI Journal of computational mathematics},
publisher={Cellule MathDoc/Centre Mersenne},
author={Giesselmann, Jan and Karsai, Attila and Tscherpel, Tabea},
year={2025},
pages={335--367}
}
References
- Ahmed, N. & Matthies, G. Higher order continuous Galerkin−Petrov time stepping schemes for transient convection-diffusion-reaction equations. ESAIM: M2AN 49, 1429–1450 (2015) – 10.1051/m2an/2015019
- Altmann, R. & Herzog, R. Continuous Galerkin schemes for semiexplicit differential-algebraic equations. IMA Journal of Numerical Analysis 42, 2214–2237 (2021) – 10.1093/imanum/drab037
- Andrews, B. D., High-order conservative and accurately dissipative numerical integrators via auxiliary variables (2024)
- Aziz, A. K. & Monk, P. Continuous finite elements in space and time for the heat equation. Math. Comp. 52, 255–274 (1989) – 10.2307/2008467
- Bradbury, J., JAX: composable transformations of Python+NumPy programs. (2018)
- Celledoni, E., Eidnes, S., Owren, B. & Ringholm, T. Dissipative Numerical Schemes on Riemannian Manifolds with Applications to Gradient Flows. SIAM J. Sci. Comput. 40, A3789–A3806 (2018) – 10.1137/18m1190628
- Celledoni, E., Energy-Preserving and Passivity-Consistent Numerical Discretization of Port-Hamiltonian Systems (2017)
- Celledoni, E. & Jackaman, J. Discrete conservation laws for finite element discretisations of multisymplectic PDEs. Journal of Computational Physics 444, 110520 (2021) – 10.1016/j.jcp.2021.110520
- Chaturantabut, S., Beattie, C. & Gugercin, S. Structure-Preserving Model Reduction for Nonlinear Port-Hamiltonian Systems. SIAM J. Sci. Comput. 38, B837–B865 (2016) – 10.1137/15m1055085
- Chrysafinos, K. & Walkington, N. Discontinuous Galerkin approximations of the Stokes and Navier-Stokes equations. Math. Comp. 79, 2135–2167 (2010) – 10.1090/s0025-5718-10-02348-3
- Cohen, D. & Hairer, E. Linear energy-preserving integrators for Poisson systems. Bit Numer Math 51, 91–101 (2011) – 10.1007/s10543-011-0310-z
- Diening, L. & Růžička, M. Interpolation operators in Orlicz–Sobolev spaces. Numer. Math. 107, 107–129 (2007) – 10.1007/s00211-007-0079-9
- Egger, H., Giesselmann, J., Kunkel, T. & Philippi, N. An asymptotic-preserving discretization scheme for gas transport in pipe networks. IMA Journal of Numerical Analysis 43, 2137–2168 (2022) – 10.1093/imanum/drac032
- Egger, H., Habrich, O. & Shashkov, V. On the Energy Stable Approximation of Hamiltonian and Gradient Systems. Computational Methods in Applied Mathematics 21, 335–349 (2020) – 10.1515/cmam-2020-0025
- Eidnes, S. Order theory for discrete gradient methods. Bit Numer Math 62, 1207–1255 (2022) – 10.1007/s10543-022-00909-z
- Ern, A. & Guermond, J.-L. Finite Elements III. Texts in Applied Mathematics (Springer International Publishing, 2021). doi:10.1007/978-3-030-57348-5 – 10.1007/978-3-030-57348-5
- French, D. A. & Schaeffer, J. W. Continuous finite element methods which preserve energy properties for nonlinear problems. Applied Mathematics and Computation 39, 271–295 (1990) – 10.1016/s0096-3003(20)80006-x
- Zhong, G. & Marsden, J. E. Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators. Physics Letters A 133, 134–139 (1988) – 10.1016/0375-9601(88)90773-6
- Gess, B., Sauer, J. & Tadmor, E. Optimal regularity in time and space for the porous medium equation. Analysis & PDE 13, 2441–2480 (2020) – 10.2140/apde.2020.13.2441
- Girault, V. & Raviart, P.-A. Finite Element Methods for Navier-Stokes Equations. Springer Series in Computational Mathematics (Springer Berlin Heidelberg, 1986). doi:10.1007/978-3-642-61623-5 – 10.1007/978-3-642-61623-5
- Gonzalez, O. Time integration and discrete Hamiltonian systems. J Nonlinear Sci 6, 449–467 (1996) – 10.1007/bf02440162
- Grmela, M. & Öttinger, H. C. Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys. Rev. E 56, 6620–6632 (1997) – 10.1103/physreve.56.6620
- Groß, M., Betsch, P. & Steinmann, P. Conservation properties of a time FE method. Part IV: Higher order energy and momentum conserving schemes. Int. J. Numer. Meth. Engng 63, 1849–1897 (2005) – 10.1002/nme.1339
- Hairer, E., Energy-preserving variant of collocation methods. JNAIAM, J. Numer. Anal. Ind. Appl. Math. (2010)
- Hairer, E. & Lubich, C. Energy-diminishing integration of gradient systems. IMA Journal of Numerical Analysis 34, 452–461 (2013) – 10.1093/imanum/drt031
- Hairer, E., Geometric numerical integration. Structure-preserving algorithms for ordinary differential equations (2010)
- Jackaman, J. I. Finite element methods as geometric structure preserving algorithms. University of Reading (2019) doi:10.48683/1926.00097182 – 10.48683/1926.00097182
- Jackaman, J. & Pryer, T. Conservative Galerkin methods for dispersive Hamiltonian problems. Calcolo 58, (2021) – 10.1007/s10092-021-00423-8
- Kotyczka, P. & Lefèvre, L. Discrete-time port-Hamiltonian systems: A definition based on symplectic integration. Systems & Control Letters 133, 104530 (2019) – 10.1016/j.sysconle.2019.104530
- McLachlan, R. I., Quispel, G. R. W. & Robidoux, N. Geometric integration using discrete gradients. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 357, 1021–1045 (1999) – 10.1098/rsta.1999.0363
- Mehrmann, V. & Morandin, R. Structure-preserving discretization for port-Hamiltonian descriptor systems. 2019 IEEE 58th Conference on Decision and Control (CDC) 6863–6868 (2019) doi:10.1109/cdc40024.2019.9030180 – 10.1109/cdc40024.2019.9030180
- Mehrmann, V. & Unger, B. Control of port-Hamiltonian differential-algebraic systems and applications. Acta Numerica 32, 395–515 (2023) – 10.1017/s0962492922000083
- Morandin, R., Modeling and Numerical Treatment of Port-Hamiltonian Descriptor Systems (2024)
- Raviart, P. A. Sur la résolution de certaines equations paraboliques non linéaires. Journal of Functional Analysis 5, 299–328 (1970) – 10.1016/0022-1236(70)90031-5
- van der Schaft, A. L2-Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer International Publishing, 2017). doi:10.1007/978-3-319-49992-5 – 10.1007/978-3-319-49992-5
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. FnT in Systems and Control 1, 173–378 (2014) – 10.1561/2600000002
- Schieweck, F. A-stable discontinuous Galerkin–Petrov time discretization of higher order. Journal of Numerical Mathematics 18, (2010) – 10.1515/jnum.2010.002
- Schöbel-Kröhn, L., Analysis and Numerical Approximation of Nonlinear Evolution Equations on Network Structures (2020)
- Schulze, P., Structure-Preserving Time Discretization of Port-Hamiltonian Systems via Discrete Gradient Pairs (2023)
- Vázquez, J. L., The porous medium equation. Mathematical theory (2007)