Reduced-order energy shaping control of large-scale linear port-Hamiltonian systems
Authors
Cristobal Ponce, Hector Ramirez, Yann Le Gorrec
Abstract
This paper is concerned with reduced-order control design for a class of high dimensional linear port-Hamiltonian systems stemming from the modeling of large-scale systems networks or from the discretization of distributed parameter systems. A class of dynamic controllers synthesized from low-dimensional and reduced-order models of the system are proposed. First, the controller structure and the criteria for asymptotic stability are established for a controller based on the full-order model. Then, using structural invariants, two design methods are proposed and compared: one based on a low-dimensional model of the system and the other on a reduced-order model based on modal truncation. With applications in shape control in mind, the system’s equilibrium points are parametrized using the controller parameters. It allows to establish an optimal criterion to minimize the norm of the error between the intended and achievable closed-loop equilibrium configurations. An asymptotic stability margin in terms of the full and low/reduced order models stiffness matrices is provided and related with the closed-loop transient performances. Mindlin plate with specific inputs is used to show how dynamic shape control can be achieved using the proposed approach.
Keywords
Port-Hamiltonian systems; Passivity-based control; Model order reduction; Shape control
Citation
- Journal: Automatica
- Year: 2025
- Volume: 171
- Issue:
- Pages: 111934
- Publisher: Elsevier BV
- DOI: 10.1016/j.automatica.2024.111934
BibTeX
@article{Ponce_2025,
title={{Reduced-order energy shaping control of large-scale linear port-Hamiltonian systems}},
volume={171},
ISSN={0005-1098},
DOI={10.1016/j.automatica.2024.111934},
journal={Automatica},
publisher={Elsevier BV},
author={Ponce, Cristobal and Ramirez, Hector and Le Gorrec, Yann},
year={2025},
pages={111934}
}
References
- Bansal, H., Zwart, H., Iapichino, L., Schilders, W. & van de Wouw, N. Port-Hamiltonian modelling of fluid dynamics models with variable cross-section. IFAC-PapersOnLine vol. 54 365–372 (2021) – 10.1016/j.ifacol.2021.06.095
- Boyd, (2004)
- Brugnoli, A., Alazard, D., Pommier-Budinger, V. & Matignon, D. Port-Hamiltonian formulation and symplectic discretization of plate models Part I: Mindlin model for thick plates. Applied Mathematical Modelling vol. 75 940–960 (2019) – 10.1016/j.apm.2019.04.035
- Duindam, (2009)
- Dupont, P. E., Simaan, N., Choset, H. & Rucker, C. Continuum Robots for Medical Interventions. Proceedings of the IEEE vol. 110 847–870 (2022) – 10.1109/jproc.2022.3141338
- Golo, G., Talasila, V., van der Schaft, A. & Maschke, B. Hamiltonian discretization of boundary control systems. Automatica vol. 40 757–771 (2004) – 10.1016/j.automatica.2003.12.017
- Haftka, R. T. & Adelman, H. M. An analytical investigation of shape control of large space structures by applied temperatures. AIAA Journal vol. 23 450–457 (1985) – 10.2514/3.8934
- Henderson, H. V. & Searle, S. R. On Deriving the Inverse of a Sum of Matrices. SIAM Review vol. 23 53–60 (1981) – 10.1137/1023004
- Ionescu, T. C. & Astolfi, A. Families of moment matching based, structure preserving approximations for linear port Hamiltonian systems. Automatica vol. 49 2424–2434 (2013) – 10.1016/j.automatica.2013.05.006
- Liu, N., Wu, Y., Le Gorrec, Y., Lefèvre, L. & Ramirez, H. Reduced order in domain control of distributed parameter port-Hamiltonian systems via energy shaping. Automatica vol. 161 111500 (2024) – 10.1016/j.automatica.2023.111500
- Lu, K., Augarde, C. E., Coombs, W. M. & Hu, Z. Weak impositions of Dirichlet boundary conditions in solid mechanics: A critique of current approaches and extension to partially prescribed boundaries. Computer Methods in Applied Mechanics and Engineering vol. 348 632–659 (2019) – 10.1016/j.cma.2019.01.035
- Macchelli, Port-based modelling and control of the Mindlin plate. (2005)
- Malzer, T., Rams, H. & Schöberl, M. Energy-Based In-Domain Control of a Piezo-Actuated Euler-Bernoulli Beam. IFAC-PapersOnLine vol. 52 144–149 (2019) – 10.1016/j.ifacol.2019.08.025
- Maschke, Port-controlled Hamiltonian systems: modelling origins and systemtheoretic properties. (1993)
- Mora, L. A., Le Gorrec, Y., Matignon, D., Ramirez, H. & Yuz, J. I. On port-Hamiltonian formulations of 3-dimensional compressible Newtonian fluids. Physics of Fluids vol. 33 (2021) – 10.1063/5.0067784
- Morris, K., Demetriou, M. A. & Yang, S. D. Using $\BBH_{2}$-Control Performance Metrics for the Optimal Actuator Location of Distributed Parameter Systems. IEEE Transactions on Automatic Control vol. 60 450–462 (2015) – 10.1109/tac.2014.2346676
- Moulla, R., Lefévre, L. & Maschke, B. Pseudo-spectral methods for the spatial symplectic reduction of open systems of conservation laws. Journal of Computational Physics vol. 231 1272–1292 (2012) – 10.1016/j.jcp.2011.10.008
- Mourllion, B. & Birouche, A. Modal truncation for linear Hamiltonian systems: a physical energy approach. Dynamical Systems vol. 28 187–202 (2013) – 10.1080/14689367.2013.777397
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Polyuga, R. V. & van der Schaft, A. Structure preserving model reduction of port-Hamiltonian systems by moment matching at infinity. Automatica vol. 46 665–672 (2010) – 10.1016/j.automatica.2010.01.018
- Ponce, C., Ramirez, H. & Gorrec, Y. L. Finite dimensional shape control design of linear port-Hamiltonian systems with in-domain pointwise inputs. IFAC-PapersOnLine vol. 56 6777–6782 (2023) – 10.1016/j.ifacol.2023.10.385
- Ponce, C., Ramirez, H., Gorrec, Y. L. & Vargas, F. A comparative study of reduced model based boundary control design for linear port Hamiltonian systems. IFAC-PapersOnLine vol. 55 107–112 (2022) – 10.1016/j.ifacol.2022.10.385
- Ponce, C., Wu, Y., Le Gorrec, Y. & Ramirez, H. A systematic methodology for port-Hamiltonian modeling of multidimensional flexible linear mechanical systems. Applied Mathematical Modelling vol. 134 434–451 (2024) – 10.1016/j.apm.2024.05.040
- Rashad, R., Califano, F., van der Schaft, A. J. & Stramigioli, S. Twenty years of distributed port-Hamiltonian systems: a literature review. IMA Journal of Mathematical Control and Information vol. 37 1400–1422 (2020) – 10.1093/imamci/dnaa018
- Reddy, (2017)
- Reddy, (2019)
- Schöberl, Analysis and comparison of port-Hamiltonian formulations for field theories - demonstrated by means of the Mindlin plate. (2013)
- Shintake, J., Cacucciolo, V., Floreano, D. & Shea, H. Soft Robotic Grippers. Advanced Materials vol. 30 (2018) – 10.1002/adma.201707035
- Thoma, T. & Kotyczka, P. Explicit Port-Hamiltonian FEM-Models for Linear Mechanical Systems with Non-Uniform Boundary Conditions. IFAC-PapersOnLine vol. 55 499–504 (2022) – 10.1016/j.ifacol.2022.09.144
- van der Schaft, (2017)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Voß, T. & Scherpen, J. M. A. Stabilization and shape control of a 1D piezoelectric Timoshenko beam. Automatica vol. 47 2780–2785 (2011) – 10.1016/j.automatica.2011.09.026
- Yeh, Y., Cisneros, N., Wu, Y., Rabenorosoa, K. & Gorrec, Y. L. Modeling and Position Control of the HASEL Actuator via Port-Hamiltonian Approach. IEEE Robotics and Automation Letters vol. 7 7100–7107 (2022) – 10.1109/lra.2022.3181365
- Zhang, M., Borja, P., Ortega, R., Liu, Z. & Su, H. PID Passivity-Based Control of Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 63 1032–1044 (2018) – 10.1109/tac.2017.2732283
- Zhou, (1996)
- Zhou, W., Wu, Y., Hu, H., Li, Y. & Wang, Y. Port-Hamiltonian Modeling and IDA-PBC Control of an IPMC-Actuated Flexible Beam. Actuators vol. 10 236 (2021) – 10.3390/act10090236