Finite dimensional shape control design of linear port-Hamiltonian systems with in-domain pointwise inputs
Authors
Cristobal Ponce, Hector Ramirez, Yann Le Gorrec
Abstract
This paper is concerned with shape control of a class of infinite-dimensional port-Hamiltonian system, using an early lumping approach, i.e. the dynamic controller synthesized from a low-order discretized version of the system. The approach provides an optimal criterion for choosing a free parameter of the controller so that the closed-loop system converges to the best approximation of the desired imposed shape. The methodology is based on the so called control by interconnection method and structural invariant from which an analytical expression is obtained for the shapes that the system can actually achieve. An Euler-Bernoulli beam model with pointwise inputs is used as example to illustrate the proposed methodology.
Keywords
Port Hamiltonian distributed parameter systems; passivity-based control; spatial discretization; shape control
Citation
- Journal: IFAC-PapersOnLine
- Year: 2023
- Volume: 56
- Issue: 2
- Pages: 6777–6782
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2023.10.385
- Note: 22nd IFAC World Congress- Yokohama, Japan, July 9-14, 2023
BibTeX
@article{Ponce_2023,
title={{Finite dimensional shape control design of linear port-Hamiltonian systems with in-domain pointwise inputs}},
volume={56},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2023.10.385},
number={2},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Ponce, Cristobal and Ramirez, Hector and Gorrec, Yann Le},
year={2023},
pages={6777--6782}
}
References
- Brunton, (2022)
- Cardoso-Ribeiro, F. L., Matignon, D. & Lefèvre, L. A structure-preserving Partitioned Finite Element Method for the 2D wave equation. IFAC-PapersOnLine vol. 51 119–124 (2018) – 10.1016/j.ifacol.2018.06.033
- Cardoso-Ribeiro, F. L., Matignon, D. & Pommier-Budinger, V. Piezoelectric beam with distributed control ports: a power-preserving discretization using weak formulation.. IFAC-PapersOnLine vol. 49 290–297 (2016) – 10.1016/j.ifacol.2016.07.456
- Duindam, (2009)
- Golo, Hamiltonian discretization of boundary control systems. Auto-matica (2004)
- Kotyczka, P. Finite Volume Structure-Preserving Discretization of 1D Distributed-Parameter Port-Hamiltonian Systems. IFAC-PapersOnLine vol. 49 298–303 (2016) – 10.1016/j.ifacol.2016.07.457
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Liu, C. et al. Optimization of shape control of a cantilever beam using dielectric elastomer actuators. AIP Advances vol. 8 (2018) – 10.1063/1.5026160
- Liu, N., Wu, Y., Le Gorrec, Y., Ramirez, H. & Lefèvre, L. Structure-preserving discretization and control of a two-dimensional vibro-acoustic tube. IMA Journal of Mathematical Control and Information vol. 38 417–439 (2020) – 10.1093/imamci/dnaa028
- Luo, Q. & Tong, L. High precision shape control of plates using orthotropic piezoelectric actuators. Finite Elements in Analysis and Design vol. 42 1009–1020 (2006) – 10.1016/j.finel.2006.03.002
- Macchelli, A. Energy shaping of distributed parameter port-Hamiltonian systems based on finite element approximation. Systems & Control Letters vol. 60 579–589 (2011) – 10.1016/j.sysconle.2011.04.016
- Macchelli, A., Le Gorrec, Y., Ramirez, H. & Zwart, H. On the Synthesis of Boundary Control Laws for Distributed Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 62 1700–1713 (2017) – 10.1109/tac.2016.2595263
- Malzer, T., Rams, H., Kolar, B. & Schoberl, M. Stability Analysis of the Observer Error of an In-Domain Actuated Vibrating String. IEEE Control Systems Letters vol. 5 1237–1242 (2021) – 10.1109/lcsys.2020.3025414
- Maschke, Port-controlled Hamiltonian systems: modelling origins and systemtheoretic properties. (1993)
- Mattioni, Modelling and control of an IPMC actuated flexible structure: A lumped port Hamiltonian approach. Control Engineering Practice (2020)
- Moulla, R., Lefévre, L. & Maschke, B. Pseudo-spectral methods for the spatial symplectic reduction of open systems of conservation laws. Journal of Computational Physics vol. 231 1272–1292 (2012) – 10.1016/j.jcp.2011.10.008
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Plotnikova, S. V. & Kulikov, G. M. Shape Control of Composite Plates with Distributed Piezoelectric Actuators in a Three-Dimensional Formulation. Mechanics of Composite Materials vol. 56 557–572 (2020) – 10.1007/s11029-020-09904-3
- Ponce, C., Ramirez, H., Gorrec, Y. L. & Vargas, F. A comparative study of reduced model based boundary control design for linear port Hamiltonian systems. IFAC-PapersOnLine vol. 55 107–112 (2022) – 10.1016/j.ifacol.2022.10.385
- Ramirez, H., Zwart, H. & Le Gorrec, Y. Stabilization of infinite dimensional port-Hamiltonian systems by nonlinear dynamic boundary control. Automatica vol. 85 61–69 (2017) – 10.1016/j.automatica.2017.07.045
- Reddy, (2017)
- Reddy, (2019)
- Serhani, A., Matignon, D. & Haine, G. Structure-Preserving Finite Volume Method for 2D Linear and Non-Linear Port-Hamiltonian Systems. IFAC-PapersOnLine vol. 51 131–136 (2018) – 10.1016/j.ifacol.2018.06.037
- Toledo, J., Wu, Y., Ramírez, H. & Le Gorrec, Y. Observer-based boundary control of distributed port-Hamiltonian systems. Automatica vol. 120 109130 (2020) – 10.1016/j.automatica.2020.109130
- Trenchant, V., Ramirez, H., Le Gorrec, Y. & Kotyczka, P. Finite differences on staggered grids preserving the port-Hamiltonian structure with application to an acoustic duct. Journal of Computational Physics vol. 373 673–697 (2018) – 10.1016/j.jcp.2018.06.051
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- van der Schaft, (2017)
- Villegas, (2007)
- Voß, T. & Scherpen, J. M. A. Stabilization and shape control of a 1D piezoelectric Timoshenko beam. Automatica vol. 47 2780–2785 (2011) – 10.1016/j.automatica.2011.09.026
- Wang, M., Bestler, A. & Kotyczka, P. Modeling, discretization and motion control of a flexible beam in the port-Hamiltonian framework. IFAC-PapersOnLine vol. 50 6799–6806 (2017) – 10.1016/j.ifacol.2017.08.2511
- Warsewa, A., Böhm, M., Sawodny, O. & Tarín, C. A port-Hamiltonian approach to modeling the structural dynamics of complex systems. Applied Mathematical Modelling vol. 89 1528–1546 (2021) – 10.1016/j.apm.2020.07.038
- Zhou, W., Wu, Y., Hu, H., Li, Y. & Wang, Y. Port-Hamiltonian Modeling and IDA-PBC Control of an IPMC-Actuated Flexible Beam. Actuators vol. 10 236 (2021) – 10.3390/act10090236