Authors

Rostyslav V. Polyuga, Arjan van der Schaft

Abstract

Model reduction of port-Hamiltonian systems by means of the Krylov methods is considered, aiming at port-Hamiltonian structure preservation. It is shown how to employ the Arnoldi method for model reduction in a particular coordinate system in order to preserve not only a specific number of the Markov parameters but also the port-Hamiltonian structure for the reduced order model. Furthermore it is shown how the Lanczos method can be applied in a structure preserving manner to a subclass of port-Hamiltonian systems which is characterized by an algebraic condition. In fact, for the same subclass of port-Hamiltonian systems the Arnoldi method and the Lanczos method turn out to be equivalent in the sense of producing reduced order port-Hamiltonian models with the same transfer function.

Keywords

Port-Hamiltonian systems; Model reduction; Krylov methods; Arnoldi method, Lanczos method; Structure preservation; Markov parameters

Citation

BibTeX

@article{Polyuga_2010,
  title={{Structure preserving model reduction of port-Hamiltonian systems by moment matching at infinity}},
  volume={46},
  ISSN={0005-1098},
  DOI={10.1016/j.automatica.2010.01.018},
  number={4},
  journal={Automatica},
  publisher={Elsevier BV},
  author={Polyuga, Rostyslav V. and van der Schaft, Arjan},
  year={2010},
  pages={665--672}
}

Download the bib file

References

  • Antoulas, (2005)
  • Antoulas, A. C. A new result on passivity preserving model reduction. Systems & Control Letters vol. 54 361–374 (2005) – 10.1016/j.sysconle.2004.07.007
  • Gallivan, Model reduction of large-scale systems: Rational Krylov versus balancing techniques. (1999)
  • Golub, (1996)
  • Gragg, W. B. & Lindquist, A. On the partial realization problem. Linear Algebra and its Applications vol. 50 277–319 (1983) – 10.1016/0024-3795(83)90059-9
  • Gugercin, S., Antoulas, A. C. & Beattie, C. $\mathcal{H}_2$ Model Reduction for Large-Scale Linear Dynamical Systems. SIAM Journal on Matrix Analysis and Applications vol. 30 609–638 (2008) – 10.1137/060666123
  • Gutknecht, The Lanczos process and Padé approximation. (1994)
  • Hartmann, Balancing of dissipative Hamiltonian systems. (2009)
  • Hartmann, C., Vulcanov, V.-M. & Schütte, C. Balanced Truncation of Linear Second-Order Systems: A Hamiltonian Approach. Multiscale Modeling & Simulation vol. 8 1348–1367 (2010) – 10.1137/080732717
  • Ionutiu, R., Rommes, J. & Antoulas, A. C. Passivity-Preserving Model Reduction Using Dominant Spectral-Zero Interpolation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems vol. 27 2250–2263 (2008) – 10.1109/tcad.2008.2006160
  • Komzsik, (2003)
  • Lall, S., Krysl, P. & Marsden, J. E. Structure-preserving model reduction for mechanical systems. Physica D: Nonlinear Phenomena vol. 184 304–318 (2003) – 10.1016/s0167-2789(03)00227-6
  • Mehrmann, V. & Xu, H. Numerical methods in control. Journal of Computational and Applied Mathematics vol. 123 371–394 (2000) – 10.1016/s0377-0427(00)00392-7
  • Moore, B. Principal component analysis in linear systems: Controllability, observability, and model reduction. IEEE Transactions on Automatic Control vol. 26 17–32 (1981) – 10.1109/tac.1981.1102568
  • Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
  • Polyuga, R. V. & van der Schaft, A. Moment matching for linear port-Hamiltonian systems. 2009 European Control Conference (ECC) 4715–4720 (2009) doi:10.23919/ecc.2009.7075145 – 10.23919/ecc.2009.7075145
  • Schilders, (2008)
  • Sorensen, D. C. Passivity preserving model reduction via interpolation of spectral zeros. Systems & Control Letters vol. 54 347–360 (2005) – 10.1016/j.sysconle.2004.07.006
  • van der Schaft, (2000)
  • van der Schaft, Port-controlled Hamiltonian systems: Towards a theory for control and design of nonlinear physical systems. Journal of the Society of Instrument and Control Engineers of Japan (SICE) (2000)
  • van der Schaft, The Hamiltonian formulation of energy conserving physical systems with external ports. Archiv für Elektronik und Übertragungstechnik (1995)
  • Willems, J. C. Dissipative dynamical systems part I: General theory. Archive for Rational Mechanics and Analysis vol. 45 321–351 (1972) – 10.1007/bf00276493