Structure preserving model reduction of port-Hamiltonian systems by moment matching at infinity
Authors
Rostyslav V. Polyuga, Arjan van der Schaft
Abstract
Model reduction of port-Hamiltonian systems by means of the Krylov methods is considered, aiming at port-Hamiltonian structure preservation. It is shown how to employ the Arnoldi method for model reduction in a particular coordinate system in order to preserve not only a specific number of the Markov parameters but also the port-Hamiltonian structure for the reduced order model. Furthermore it is shown how the Lanczos method can be applied in a structure preserving manner to a subclass of port-Hamiltonian systems which is characterized by an algebraic condition. In fact, for the same subclass of port-Hamiltonian systems the Arnoldi method and the Lanczos method turn out to be equivalent in the sense of producing reduced order port-Hamiltonian models with the same transfer function.
Keywords
Port-Hamiltonian systems; Model reduction; Krylov methods; Arnoldi method, Lanczos method; Structure preservation; Markov parameters
Citation
- Journal: Automatica
- Year: 2010
- Volume: 46
- Issue: 4
- Pages: 665–672
- Publisher: Elsevier BV
- DOI: 10.1016/j.automatica.2010.01.018
BibTeX
@article{Polyuga_2010,
title={{Structure preserving model reduction of port-Hamiltonian systems by moment matching at infinity}},
volume={46},
ISSN={0005-1098},
DOI={10.1016/j.automatica.2010.01.018},
number={4},
journal={Automatica},
publisher={Elsevier BV},
author={Polyuga, Rostyslav V. and van der Schaft, Arjan},
year={2010},
pages={665--672}
}
References
- Antoulas, (2005)
- Antoulas, A. C. A new result on passivity preserving model reduction. Systems & Control Letters vol. 54 361–374 (2005) – 10.1016/j.sysconle.2004.07.007
- Gallivan, Model reduction of large-scale systems: Rational Krylov versus balancing techniques. (1999)
- Golub, (1996)
- Gragg, W. B. & Lindquist, A. On the partial realization problem. Linear Algebra and its Applications vol. 50 277–319 (1983) – 10.1016/0024-3795(83)90059-9
- Gugercin, S., Antoulas, A. C. & Beattie, C. $\mathcal{H}_2$ Model Reduction for Large-Scale Linear Dynamical Systems. SIAM Journal on Matrix Analysis and Applications vol. 30 609–638 (2008) – 10.1137/060666123
- Gutknecht, The Lanczos process and Padé approximation. (1994)
- Hartmann, Balancing of dissipative Hamiltonian systems. (2009)
- Hartmann, C., Vulcanov, V.-M. & Schütte, C. Balanced Truncation of Linear Second-Order Systems: A Hamiltonian Approach. Multiscale Modeling & Simulation vol. 8 1348–1367 (2010) – 10.1137/080732717
- Ionutiu, R., Rommes, J. & Antoulas, A. C. Passivity-Preserving Model Reduction Using Dominant Spectral-Zero Interpolation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems vol. 27 2250–2263 (2008) – 10.1109/tcad.2008.2006160
- Komzsik, (2003)
- Lall, S., Krysl, P. & Marsden, J. E. Structure-preserving model reduction for mechanical systems. Physica D: Nonlinear Phenomena vol. 184 304–318 (2003) – 10.1016/s0167-2789(03)00227-6
- Mehrmann, V. & Xu, H. Numerical methods in control. Journal of Computational and Applied Mathematics vol. 123 371–394 (2000) – 10.1016/s0377-0427(00)00392-7
- Moore, B. Principal component analysis in linear systems: Controllability, observability, and model reduction. IEEE Transactions on Automatic Control vol. 26 17–32 (1981) – 10.1109/tac.1981.1102568
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Polyuga, R. V. & van der Schaft, A. Moment matching for linear port-Hamiltonian systems. 2009 European Control Conference (ECC) 4715–4720 (2009) doi:10.23919/ecc.2009.7075145 – 10.23919/ecc.2009.7075145
- Schilders, (2008)
- Sorensen, D. C. Passivity preserving model reduction via interpolation of spectral zeros. Systems & Control Letters vol. 54 347–360 (2005) – 10.1016/j.sysconle.2004.07.006
- van der Schaft, (2000)
- van der Schaft, Port-controlled Hamiltonian systems: Towards a theory for control and design of nonlinear physical systems. Journal of the Society of Instrument and Control Engineers of Japan (SICE) (2000)
- van der Schaft, The Hamiltonian formulation of energy conserving physical systems with external ports. Archiv für Elektronik und Übertragungstechnik (1995)
- Willems, J. C. Dissipative dynamical systems part I: General theory. Archive for Rational Mechanics and Analysis vol. 45 321–351 (1972) – 10.1007/bf00276493