Reduced order in domain control of distributed parameter port-Hamiltonian systems via energy shaping
Authors
Ning Liu, Yongxin Wu, Yann Le Gorrec, Laurent Lefèvre, Hector Ramirez
Abstract
An in-domain finite dimensional controller for a class of distributed parameter systems on a one-dimensional spatial domain formulated under the port-Hamiltonian framework is presented. Based on (Trenchant et al. 2017) where positive feedback and a late lumping approach is used, we extend the Control by Interconnection method and propose a new energy shaping methodology with an early lumping approach on the distributed spatial domain of the system. Our two main control objectives are to stabilize the closed-loop system, as well as to improve the closed-loop dynamic performances. With the early lumping approach, we investigate two cases of the controller design, the ideal case where each distributed controller acts independently on the spatial domain (fully-actuated), and the more realistic case where the control action is piecewise constant over certain intervals (under-actuated). We then analyze the asymptotic stability of the closed-loop system when the infinite dimensional plant system is connected with the finite dimensional controller. Furthermore we provide simulation results comparing the performance of the fully-actuated case and the under-actuated case with an example of an elastic vibrating string.
Keywords
Port-Hamiltonian systems; Distributed parameter systems; Passivity-based control; Casimir function; Optimization
Citation
- Journal: Automatica
- Year: 2024
- Volume: 161
- Issue:
- Pages: 111500
- Publisher: Elsevier BV
- DOI: 10.1016/j.automatica.2023.111500
BibTeX
@article{Liu_2024,
title={{Reduced order in domain control of distributed parameter port-Hamiltonian systems via energy shaping}},
volume={161},
ISSN={0005-1098},
DOI={10.1016/j.automatica.2023.111500},
journal={Automatica},
publisher={Elsevier BV},
author={Liu, Ning and Wu, Yongxin and Le Gorrec, Yann and Lefèvre, Laurent and Ramirez, Hector},
year={2024},
pages={111500}
}
References
- Aoues, S., Eberard, D. & Marquis-Favre, W. Canonical interconnection of discrete linear port-Hamiltonian systems. 52nd IEEE Conference on Decision and Control 3166–3171 (2013) doi:10.1109/cdc.2013.6760366 – 10.1109/cdc.2013.6760366
- Augner, (2016)
- Balas, Toward a more practical control theory for distributed parameter systems. (1982)
- Burns, J. A. 2. Nonlinear Distributed Parameter Control Systems with Non-Normal Linearizations: Applications and Approximations. Research Directions in Distributed Parameter Systems 17–53 (2003) doi:10.1137/1.9780898717525.ch2 – 10.1137/1.9780898717525.ch2
- Christofides, (2001)
- Curtain, (1995)
- Duindam, (2009)
- Golo, G., Talasila, V., van der Schaft, A. & Maschke, B. Hamiltonian discretization of boundary control systems. Automatica vol. 40 757–771 (2004) – 10.1016/j.automatica.2003.12.017
- Higham, N. J. Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications vol. 103 103–118 (1988) – 10.1016/0024-3795(88)90223-6
- Jacob, (2012)
- Kotyczka, P., Maschke, B. & Lefèvre, L. Weak form of Stokes–Dirac structures and geometric discretization of port-Hamiltonian systems. Journal of Computational Physics vol. 361 442–476 (2018) – 10.1016/j.jcp.2018.02.006
- Lasiecka, (2000)
- Le Gorrec, Energy shaping control of 1D distributed parameter systems. (2022)
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Lions, J. L. THE OPTIMAL CONTROL OF DISTRIBUTED SYSTEMS. Russian Mathematical Surveys vol. 28 13–46 (1973) – 10.1070/rm1973v028n04abeh001586
- Liu, N., Wu, Y. & Le Gorrec, Y. Energy-Based Modeling of Ionic Polymer–Metal Composite Actuators Dedicated to the Control of Flexible Structures. IEEE/ASME Transactions on Mechatronics vol. 26 3139–3150 (2021) – 10.1109/tmech.2021.3053609
- Liu, In-domain finite dimensional control of distributed parameter port-Hamiltonian systems via energy shaping. (2021)
- Liu, (1999)
- Luo, (2012)
- Macchelli, A., Le Gorrec, Y., Ramirez, H. & Zwart, H. On the Synthesis of Boundary Control Laws for Distributed Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 62 1700–1713 (2017) – 10.1109/tac.2016.2595263
- Malzer, T., Rams, H. & Schöberl, M. Energy-Based In-Domain Control of a Piezo-Actuated Euler-Bernoulli Beam. IFAC-PapersOnLine vol. 52 144–149 (2019) – 10.1016/j.ifacol.2019.08.025
- Malzer, T., Rams, H. & Schöberl, M. On structural invariants in the energy-based in-domain control of infinite-dimensional port-Hamiltonian systems. Systems & Control Letters vol. 145 104778 (2020) – 10.1016/j.sysconle.2020.104778
- Malzer, T., Toledo, J., Gorrec, Y. L. & Schöberl, M. Energy-Based In-Domain Control and Observer Design for Infinite-Dimensional Port-Hamiltonian Systems. IFAC-PapersOnLine vol. 54 468–475 (2021) – 10.1016/j.ifacol.2021.06.104
- Maschke, B. M. J. & van der Schaft, A. J. Port Controlled Hamiltonian Representation of Distributed Parameter Systems. IFAC Proceedings Volumes vol. 33 27–37 (2000) – 10.1016/s1474-6670(17)35543-x
- Maschke, B. M., Van Der Schaft, A. J. & Breedveld, P. C. An intrinsic hamiltonian formulation of network dynamics: non-standard poisson structures and gyrators. Journal of the Franklin Institute vol. 329 923–966 (1992) – 10.1016/s0016-0032(92)90049-m
- Moulla, R., Lefévre, L. & Maschke, B. Pseudo-spectral methods for the spatial symplectic reduction of open systems of conservation laws. Journal of Computational Physics vol. 231 1272–1292 (2012) – 10.1016/j.jcp.2011.10.008
- Naylor, (1971)
- Orlov, Y. V., Fradkov, A. L. & Andrievsky, B. Energy control of distributed parameter systems via speed-gradient method: case study of string and sine-Gordon benchmark models. International Journal of Control vol. 90 2554–2566 (2016) – 10.1080/00207179.2016.1260160
- Orlov, Y., Fradkov, A. L. & Andrievsky, B. Output Feedback Energy Control of the Sine-Gordon PDE Model Using Collocated Spatially Sampled Sensing and Actuation. IEEE Transactions on Automatic Control vol. 65 1484–1498 (2020) – 10.1109/tac.2019.2921620
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Schröck, Control of a flexible beam actuated by macro-fiber composite patches: I. Modeling and feedforward trajectory control. Smart Materials and Structures (2010)
- Shores, (2007)
- Trenchant, On the use of structural invariants for the distributed control of infinite dimensional port-Hamitonian systems. (2017)
- van der Schaft, (2016)
- Villegas, (2007)
- Wu, Y., Hamroun, B., Le Gorrec, Y. & Maschke, B. Reduced Order LQG Control Design for Infinite Dimensional Port Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 66 865–871 (2021) – 10.1109/tac.2020.2997373