Modeling and Position Control of the HASEL Actuator via Port-Hamiltonian Approach
Authors
Yu Yeh, Nelson Cisneros, Yongxin Wu, Kanty Rabenorosoa, Yann Le Gorrec
Abstract
This paper deals with the modeling and control problem of a Hydraulically Amplified Self-healing Electrostatic (HASEL) actuator based on the port-Hamiltonian framework. A nonlinear spring-damper system is used to approximate the mechanical deformation of the actuator due to the motion of the fluid while a nonlinear capacitance is used to approximate the electric behavior of the system. The actuator position control strategy is investigated based on the Interconnection Damping Assignment-Passivity Based Control (IDA-PBC) method, with further Integral Actions (IA) added to cope with load uncertainties. The proposed model and control laws are validated on an experimental benchmark. The experimental tests demonstrate that the proposed model is accurate up to 94% of fitness. The controllers allow assigning the actuator position with ramp and sinusoidal references with the relative error less than 5%. At last, the robustness of the proposed IDA-PBC controller with IA has been shown with the experimental result for the unknown load disturbance rejection.
Citation
- Journal: IEEE Robotics and Automation Letters
- Year: 2022
- Volume: 7
- Issue: 3
- Pages: 7100–7107
- Publisher: Institute of Electrical and Electronics Engineers (IEEE)
- DOI: 10.1109/lra.2022.3181365
BibTeX
@article{Yeh_2022,
title={{Modeling and Position Control of the HASEL Actuator via Port-Hamiltonian Approach}},
volume={7},
ISSN={2377-3774},
DOI={10.1109/lra.2022.3181365},
number={3},
journal={IEEE Robotics and Automation Letters},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Yeh, Yu and Cisneros, Nelson and Wu, Yongxin and Rabenorosoa, Kanty and Gorrec, Yann Le},
year={2022},
pages={7100--7107}
}
References
- Rus, D. & Tolley, M. T. Design, fabrication and control of soft robots. Nature vol. 521 467–475 (2015) – 10.1038/nature14543
- Acome, E. et al. Hydraulically amplified self-healing electrostatic actuators with muscle-like performance. Science vol. 359 61–65 (2018) – 10.1126/science.aao6139
- Rothemund, P., Kellaris, N., Mitchell, S. K., Acome, E. & Keplinger, C. Hasel Actuators: HASEL Artificial Muscles for a New Generation of Lifelike Robots—Recent Progress and Future Opportunities (Adv. Mater. 19/2021). Advanced Materials vol. 33 (2021) – 10.1002/adma.202170149
- Rothemund, P., Kirkman, S. & Keplinger, C. Dynamics of electrohydraulic soft actuators. Proceedings of the National Academy of Sciences vol. 117 16207–16213 (2020) – 10.1073/pnas.2006596117
- Kellaris, N. et al. Spider‐Inspired Electrohydraulic Actuators for Fast, Soft‐Actuated Joints. Advanced Science vol. 8 (2021) – 10.1002/advs.202100916
- Kellaris, N., Gopaluni Venkata, V., Smith, G. M., Mitchell, S. K. & Keplinger, C. Peano-HASEL actuators: Muscle-mimetic, electrohydraulic transducers that linearly contract on activation. Science Robotics vol. 3 (2018) – 10.1126/scirobotics.aar3276
- Mitchell, S. K. et al. An Easy‐to‐Implement Toolkit to Create Versatile and High‐Performance HASEL Actuators for Untethered Soft Robots. Advanced Science vol. 6 (2019) – 10.1002/advs.201900178
- Kellaris, N., Venkata, V. G., Rothemund, P. & Keplinger, C. An analytical model for the design of Peano-HASEL actuators with drastically improved performance. Extreme Mechanics Letters vol. 29 100449 (2019) – 10.1016/j.eml.2019.100449
- Johnson, B. K. et al. Identification and Control of a Nonlinear Soft Actuator and Sensor System. IEEE Robotics and Automation Letters vol. 5 3783–3790 (2020) – 10.1109/lra.2020.2982056
- Liu, D.-X., Bao, J., Liu, D., Lu, Y. & Xu, J. Modeling of Planar Hydraulically Amplified Self-Healing Electrostatic Actuators. IEEE Robotics and Automation Letters vol. 6 7533–7540 (2021) – 10.1109/lra.2021.3098916
- Maschke, B. M. & van der Schaft, A. J. Port-Controlled Hamiltonian Systems: Modelling Origins and Systemtheoretic Properties. IFAC Proceedings Volumes vol. 25 359–365 (1992) – 10.1016/s1474-6670(17)52308-3
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Dòria-Cerezo, A., Batlle, C. & Espinosa-Pérez, G. Passivity-based control of a wound-rotor synchronous motor. IET Control Theory & Applications vol. 4 2049–2057 (2010) – 10.1049/iet-cta.2009.0641
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Zhou, W., Wu, Y., Hu, H., Li, Y. & Wang, Y. Port-Hamiltonian Modeling and IDA-PBC Control of an IPMC-Actuated Flexible Beam. Actuators vol. 10 236 (2021) – 10.3390/act10090236
- Righi, M., Fontana, M., Vertechy, R., Duranti, M. & Moretti, G. Analysis of dielectric fluid transducers. Electroactive Polymer Actuators and Devices (EAPAD) XX 29 (2018) doi:10.1117/12.2297082 – 10.1117/12.2297082
- Ferguson, New results on disturbance rejection for energy-shaping controlled port-Hamiltonian systems. (2017)
- Chan-Zheng, C., Borja, P. & Scherpen, J. M. A. Tuning Rules for a Class of Passivity-Based Controllers for Mechanical Systems. IEEE Control Systems Letters vol. 5 1892–1897 (2021) – 10.1109/lcsys.2020.3044835