A systematic methodology for port-Hamiltonian modeling of multidimensional flexible linear mechanical systems
Authors
Cristobal Ponce, Yongxin Wu, Yann Le Gorrec, Hector Ramirez
Abstract
This article introduces a novel systematic methodology for modeling a class of multidimensional linear mechanical systems that directly allows to obtain their infinite-dimensional port-Hamiltonian representation. While the approach is tailored to systems governed by specific kinematic assumptions, it encompasses a wide range of models found in current literature, including ℓ-dimensional elasticity models (where ℓ = 1, 2, 3), vibrating strings, torsion in circular bars, classical beam and plate models, among others. The methodology involves formulating the displacement field using primary generalized coordinates via a linear algebraic relation. The non-zero components of the strain tensor are then calculated and expressed using secondary generalized coordinates, enabling the characterization of the skew-adjoint differential operator associated with the port-Hamiltonian representation. By applying Hamilton’s principle and employing a specially developed integration by parts formula for the considered class of differential operators, the port-Hamiltonian model is directly obtained, along with the definition of boundary inputs and outputs. To illustrate the methodology, the plate modeling process based on Reddy’s third-order shear deformation theory is presented as an example. To the best of our knowledge, this is the first time that a port-Hamiltonian representation of this system is presented in the literature.
Keywords
Infinite-dimensional systems; Port-Hamiltonian systems; Modeling; Hamilton’s principle
Citation
- Journal: Applied Mathematical Modelling
- Year: 2024
- Volume: 134
- Issue:
- Pages: 434–451
- Publisher: Elsevier BV
- DOI: 10.1016/j.apm.2024.05.040
BibTeX
@article{Ponce_2024,
title={{A systematic methodology for port-Hamiltonian modeling of multidimensional flexible linear mechanical systems}},
volume={134},
ISSN={0307-904X},
DOI={10.1016/j.apm.2024.05.040},
journal={Applied Mathematical Modelling},
publisher={Elsevier BV},
author={Ponce, Cristobal and Wu, Yongxin and Le Gorrec, Yann and Ramirez, Hector},
year={2024},
pages={434--451}
}
References
- Goldstein, (2002)
- Lanczos, (2012)
- Landau, (2013)
- Arnol’d, (2013)
- Hassani, (2013)
- de León, (2011)
- Maschke, B. M. & van der Schaft, A. J. Port-Controlled Hamiltonian Systems: Modelling Origins and Systemtheoretic Properties. IFAC Proceedings Volumes vol. 25 359–365 (1992) – 10.1016/s1474-6670(17)52308-3
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Duindam, (2009)
- van der Schaft, (2017)
- Rashad, R., Califano, F., van der Schaft, A. J. & Stramigioli, S. Twenty years of distributed port-Hamiltonian systems: a literature review. IMA Journal of Mathematical Control and Information vol. 37 1400–1422 (2020) – 10.1093/imamci/dnaa018
- Nishida, G. & Yamakita, M. A higher order Stokes-Dirac structure for distributed-parameter port-Hamiltonian systems. Proceedings of the 2004 American Control Conference 5004–5009 vol.6 (2004) doi:10.23919/acc.2004.1384643 – 10.23919/acc.2004.1384643
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM Journal on Control and Optimization vol. 43 743–767 (2004) – 10.1137/s0363012903429530
- Macchelli, Port-based modelling and control of the Mindlin plate. (2005)
- Brugnoli, A., Alazard, D., Pommier-Budinger, V. & Matignon, D. Port-Hamiltonian formulation and symplectic discretization of plate models Part I: Mindlin model for thick plates. Applied Mathematical Modelling vol. 75 940–960 (2019) – 10.1016/j.apm.2019.04.035
- Brugnoli, A., Alazard, D., Pommier-Budinger, V. & Matignon, D. Port-Hamiltonian formulation and symplectic discretization of plate models Part II: Kirchhoff model for thin plates. Applied Mathematical Modelling vol. 75 961–981 (2019) – 10.1016/j.apm.2019.04.036
- Mattioni, (2021)
- Brugnoli, (2020)
- Nishida, Formal distributed port-Hamiltonian representation of field equations. (2005)
- Yoshimura, H. & Marsden, J. E. Dirac structures in Lagrangian mechanics Part II: Variational structures. Journal of Geometry and Physics vol. 57 209–250 (2006) – 10.1016/j.geomphys.2006.02.012
- Nishida, G., Maschke, B., Yamakita, M. & Ito, K. Variational Structure of Distributed Parameter Systems with Boundary Connections. IFAC Proceedings Volumes vol. 43 843–848 (2010) – 10.3182/20100901-3-it-2016.00277
- Nishida, G. & Maschke, B. Implicit Representation for Passivity-Based Boundary Controls. IFAC Proceedings Volumes vol. 45 200–207 (2012) – 10.3182/20120829-3-it-4022.00032
- Schöberl, M. & Siuka, A. Jet bundle formulation of infinite-dimensional port-Hamiltonian systems using differential operators. Automatica vol. 50 607–613 (2014) – 10.1016/j.automatica.2013.11.035
- Reddy, (2013)
- Reddy, (2017)
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Reddy, (2006)
- Warsewa, A., Böhm, M., Sawodny, O. & Tarín, C. A port-Hamiltonian approach to modeling the structural dynamics of complex systems. Applied Mathematical Modelling vol. 89 1528–1546 (2021) – 10.1016/j.apm.2020.07.038
- Schöberl, Analysis and comparison of port-Hamiltonian formulations for field theories-demonstrated by means of the Mindlin plate. (2013)
- Maschke,
- van der Schaft, A. & Mehrmann, V. Linear port-Hamiltonian DAE systems revisited. Systems & Control Letters vol. 177 105564 (2023) – 10.1016/j.sysconle.2023.105564
- Reddy, J. N. A Simple Higher-Order Theory for Laminated Composite Plates. Journal of Applied Mechanics vol. 51 745–752 (1984) – 10.1115/1.3167719
- Reddy, (2003)
- Bedford, (1985)
- Othman, Plane waves in generalized magneto-thermo-viscoelastic medium with voids under the effect of initial stress and laser pulse heating. Struct. Eng. Mech. (2020)
- Abbas, I. A. & Kumar, R. 2D deformation in initially stressed thermoelastic half-space with voids. Steel and Composite Structures 20, 1103–1117 (2016) – 10.12989/scs.2016.20.5.1103
- Abbas, I., Hobiny, A. & Marin, M. Photo-thermal interactions in a semi-conductor material with cylindrical cavities and variable thermal conductivity. Journal of Taibah University for Science vol. 14 1369–1376 (2020) – 10.1080/16583655.2020.1824465
- Gurtin, (1973)