A comparative study of reduced model based boundary control design for linear port Hamiltonian systems
Authors
Cristobal Ponce, Hector Ramirez, Yann Le Gorrec, Francisco Vargas
Abstract
A comparative study of passivity based boundary control design for a class of infinite dimensional port-Hamiltonian system using two different model reduction approaches is presented. The first approach is based on a direct low order structure preserving discretization while the second approach arise from the structure preserving model reduction of a high order discretzed model. Two passivity-based control techniques, namely control by interconnection and damping injection, are used to change the equilibrium point and the convergence rate of the closed-loop system. An Euler-Bernoulli beam example is used to illustrate the findings by means of discussion and numerical simulations.
Keywords
Infinite dimensional system; port-Hamiltonian systems; passivity-based control; spatial discretization; model reduction
Citation
- Journal: IFAC-PapersOnLine
- Year: 2022
- Volume: 55
- Issue: 26
- Pages: 107–112
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2022.10.385
- Note: 4th IFAC Workshop on Control of Systems Governed by Partial Differential Equations CPDE 2022- Kiel, Germany, September 5-7, 2022
BibTeX
@article{Ponce_2022,
title={{A comparative study of reduced model based boundary control design for linear port Hamiltonian systems}},
volume={55},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2022.10.385},
number={26},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Ponce, Cristobal and Ramirez, Hector and Gorrec, Yann Le and Vargas, Francisco},
year={2022},
pages={107--112}
}
References
- Brugnoli, A., Alazard, D., Pommier-Budinger, V. & Matignon, D. Port-Hamiltonian formulation and symplectic discretization of plate models Part II: Kirchhoff model for thin plates. Applied Mathematical Modelling vol. 75 961–981 (2019) – 10.1016/j.apm.2019.04.036
- Cardoso-Ribeiro, F. L., Matignon, D. & Lefèvre, L. A structure-preserving Partitioned Finite Element Method for the 2D wave equation. IFAC-PapersOnLine vol. 51 119–124 (2018) – 10.1016/j.ifacol.2018.06.033
- Cook, (2007)
- Duindam, (2009)
- Golo, Hamiltonian discretization of boundary control systems. Auto-matica (2004)
- Ionescu, T. C. & Astolfi, A. Families of moment matching based, structure preserving approximations for linear port Hamiltonian systems. Automatica vol. 49 2424–2434 (2013) – 10.1016/j.automatica.2013.05.006
- Jacob, (2012)
- Kawano, Y. & Scherpen, J. M. A. Structure Preserving Truncation of Nonlinear Port Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 63 4286–4293 (2018) – 10.1109/tac.2018.2811787
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Macchelli, A., Le Gorrec, Y., Ramirez, H. & Zwart, H. On the Synthesis of Boundary Control Laws for Distributed Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 62 1700–1713 (2017) – 10.1109/tac.2016.2595263
- Macchelli, A., Le Gorrec, Y. & Ramirez, H. Exponential Stabilization of Port-Hamiltonian Boundary Control Systems via Energy Shaping. IEEE Transactions on Automatic Control vol. 65 4440–4447 (2020) – 10.1109/tac.2020.3004798
- Moore, B. Principal component analysis in linear systems: Controllability, observability, and model reduction. IEEE Transactions on Automatic Control vol. 26 17–32 (1981) – 10.1109/tac.1981.1102568
- Moulla, R., Lefévre, L. & Maschke, B. Pseudo-spectral methods for the spatial symplectic reduction of open systems of conservation laws. Journal of Computational Physics vol. 231 1272–1292 (2012) – 10.1016/j.jcp.2011.10.008
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Polyuga, R. V. & van der Schaft, A. Structure preserving model reduction of port-Hamiltonian systems by moment matching at infinity. Automatica vol. 46 665–672 (2010) – 10.1016/j.automatica.2010.01.018
- Ramirez, Exponential stabilization of boundary controlled port-Hamiltonian systems with dynamic feedback. Automatic Control. IEEE Transactions on (2014)
- Rashad, R., Califano, F., van der Schaft, A. J. & Stramigioli, S. Twenty years of distributed port-Hamiltonian systems: a literature review. IMA Journal of Mathematical Control and Information vol. 37 1400–1422 (2020) – 10.1093/imamci/dnaa018
- Reddy, (2017)
- Trenchant, V., Ramirez, H., Le Gorrec, Y. & Kotyczka, P. Finite differences on staggered grids preserving the port-Hamiltonian structure with application to an acoustic duct. Journal of Computational Physics vol. 373 673–697 (2018) – 10.1016/j.jcp.2018.06.051
- van der Schaft, (2000)
- Varga, A. Enhanced modal approach for model reduction. Mathematical Modelling of Systems vol. 1 91–105 (1995) – 10.1080/13873959508837010
- Villegas, (2007)