Geometry of Thermodynamic Processes
Authors
Arjan Van der Schaft, Bernhard Maschke
Abstract
Citation
- Journal: Entropy
- Year: 2018
- Volume: 20
- Issue: 12
- Pages: 925
- Publisher: MDPI AG
- DOI: 10.3390/e20120925
BibTeX
@article{Van_der_Schaft_2018,
title={{Geometry of Thermodynamic Processes}},
volume={20},
ISSN={1099-4300},
DOI={10.3390/e20120925},
number={12},
journal={Entropy},
publisher={MDPI AG},
author={Van der Schaft, Arjan and Maschke, Bernhard},
year={2018},
pages={925}
}
References
- MrugaŁa, R. Geometrical formulation of equilibrium phenomenological thermodynamics. Reports on Mathematical Physics vol. 14 419–427 (1978) – 10.1016/0034-4877(78)90010-1
- On equivalence of two metrics in classical thermodynamics. Physica (1984)
- Mrugała, R. Submanifolds in the thermodynamic phase space. Reports on Mathematical Physics vol. 21 197–203 (1985) – 10.1016/0034-4877(85)90059-x
- On contact and metric structures on thermodynamic spaces. RIMS Kokyuroku (2000)
- On a special family of thermodynamic processes and their invariants. Rep. Math. Phys. (2000)
- Mrugala, R., Nulton, J. D., Schön, J. C. & Salamon, P. Statistical approach to the geometric structure of thermodynamics. Physical Review A vol. 41 3156–3160 (1990) – 10.1103/physreva.41.3156
- Mrugala, R., Nulton, J. D., Christian Schön, J. & Salamon, P. Contact structure in thermodynamic theory. Reports on Mathematical Physics vol. 29 109–121 (1991) – 10.1016/0034-4877(91)90017-h
- Bravetti, A., Lopez-Monsalvo, C. S. & Nettel, F. Contact symmetries and Hamiltonian thermodynamics. Annals of Physics vol. 361 377–400 (2015) – 10.1016/j.aop.2015.07.010
- Bravetti, A., Lopez-Monsalvo, C. & Nettel, F. Conformal Gauge Transformations in Thermodynamics. Entropy vol. 17 6150–6168 (2015) – 10.3390/e17096150
- Eberard, D., Maschke, B. M. & van der Schaft, A. J. An extension of Hamiltonian systems to the thermodynamic phase space: Towards a geometry of nonreversible processes. Reports on Mathematical Physics vol. 60 175–198 (2007) – 10.1016/s0034-4877(07)00024-9
- Favache, A., Dos Santos Martins, V. S., Dochain, D. & Maschke, B. Some Properties of Conservative Port Contact Systems. IEEE Transactions on Automatic Control vol. 54 2341–2351 (2009) – 10.1109/tac.2009.2028973
- Favache, A., Dochain, D. & Maschke, B. An entropy-based formulation of irreversible processes based on contact structures. Chemical Engineering Science vol. 65 5204–5216 (2010) – 10.1016/j.ces.2010.06.019
- Gay-Balmaz, F. & Yoshimura, H. A Lagrangian variational formulation for nonequilibrium thermodynamics. Part I: Discrete systems. Journal of Geometry and Physics vol. 111 169–193 (2017) – 10.1016/j.geomphys.2016.08.018
- Gromov, D. Two Approaches to the Description of the Evolution of Thermodynamic Systems. IFAC-PapersOnLine vol. 49 34–39 (2016) – 10.1016/j.ifacol.2016.10.749
- Merker, J. & Krüger, M. On a variational principle in thermodynamics. Continuum Mechanics and Thermodynamics vol. 25 779–793 (2012) – 10.1007/s00161-012-0277-2
- Ramirez, H., Maschke, B. & Sbarbaro, D. Feedback equivalence of input–output contact systems. Systems & Control Letters vol. 62 475–481 (2013) – 10.1016/j.sysconle.2013.02.008
- Ramirez, H., Maschke, B. & Sbarbaro, D. Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR. Chemical Engineering Science vol. 89 223–234 (2013) – 10.1016/j.ces.2012.12.002
- Ramirez, H., Maschke, B. & Sbarbaro, D. Partial Stabilization of Input-Output Contact Systems on a Legendre Submanifold. IEEE Transactions on Automatic Control vol. 62 1431–1437 (2017) – 10.1109/tac.2016.2572403
- Gromov, D. & Castaños, F. The geometric structure of interconnected thermo-mechanical systems. IFAC-PapersOnLine vol. 50 582–587 (2017) – 10.1016/j.ifacol.2017.08.083
- Balian, R. & Valentin, P. Hamiltonian structure of thermodynamics with gauge. The European Physical Journal B vol. 21 269–282 (2001) – 10.1007/s100510170202
- Arnold, V. I. Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics (Springer New York, 1989). doi:10.1007/978-1-4757-2063-1 – 10.1007/978-1-4757-2063-1
- Libermann, P. & Marle, C.-M. Symplectic Geometry and Analytical Mechanics. (Springer Netherlands, 1987). doi:10.1007/978-94-009-3807-6 – 10.1007/978-94-009-3807-6
- Maschke, B. & van der Schaft, A. Homogeneous Hamiltonian Control Systems Part II: Application to thermodynamic systems. IFAC-PapersOnLine vol. 51 7–12 (2018) – 10.1016/j.ifacol.2018.06.002
- Maschke, Homogeneous Hamiltonian control systems, Part I: Geometric formulation. IFAC-Papers OnLine (2018)
- Weinhold, F. Metric geometry of equilibrium thermodynamics. The Journal of Chemical Physics vol. 63 2479–2483 (1975) – 10.1063/1.431689
- Ruppeiner, G. Thermodynamics: A Riemannian geometric model. Physical Review A vol. 20 1608–1613 (1979) – 10.1103/physreva.20.1608
- Maschke, B. M. & van der Schaft, A. J. Port-Controlled Hamiltonian Systems: Modelling Origins and Systemtheoretic Properties. IFAC Proceedings Volumes vol. 25 359–365 (1992) – 10.1016/s1474-6670(17)52308-3
- Maschke, The Hamiltonian formulation of energy conserving physical systems with external ports. Archiv für Elektronik und Übertragungstechnik (1995)
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Tisza, L. The thermodynamics of phase equilibrium. Annals of Physics vol. 13 1–92 (1961) – 10.1016/0003-4916(61)90027-6
- Amari, S. Information Geometry and Its Applications. Applied Mathematical Sciences (Springer Japan, 2016). doi:10.1007/978-4-431-55978-8 – 10.1007/978-4-431-55978-8
- Bullo, F. & Lewis, A. D. Geometric Control of Mechanical Systems. Texts in Applied Mathematics (Springer New York, 2005). doi:10.1007/978-1-4899-7276-7 – 10.1007/978-1-4899-7276-7
- Variational and Hamiltonian Control Systems. Lecture Notes in Control and Information Sciences (Springer Berlin Heidelberg, 1987). doi:10.1007/bfb0042858 – 10.1007/bfb0042858
- Grmela, M. Contact Geometry of Mesoscopic Thermodynamics and Dynamics. Entropy vol. 16 1652–1686 (2014) – 10.3390/e16031652
- Morrison, P. J. A paradigm for joined Hamiltonian and dissipative systems. Physica D: Nonlinear Phenomena vol. 18 410–419 (1986) – 10.1016/0167-2789(86)90209-5
- Hamiltonian dynamics with external forces and observations. Math. Syst. Theory (1982)
- van der Schaft, A. J. System theory and mechanics. Lecture Notes in Control and Information Sciences 426–452 (1989) doi:10.1007/bfb0008472 – 10.1007/bfb0008472
- van der Schaft, A. L2-Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer International Publishing, 2017). doi:10.1007/978-3-319-49992-5 – 10.1007/978-3-319-49992-5
- Willems, J. C. Dissipative dynamical systems part I: General theory. Archive for Rational Mechanics and Analysis vol. 45 321–351 (1972) – 10.1007/bf00276493
- Nijmeijer, H. & van der Schaft, A. Nonlinear Dynamical Control Systems. (Springer New York, 1990). doi:10.1007/978-1-4757-2101-0 – 10.1007/978-1-4757-2101-0