An irreversible port-Hamiltonian model for a class of piezoelectric actuators
Authors
Javier Caballeria, Hector Ramirez, Yann Le Gorrec
Abstract
An irreversible port-Hamiltonian system formulation of a class of piezoelectric actuator with non-negligible entropy increase is proposed. The proposed model encompasses the hysteresis and the irreversible thermodynamic changes due to mechanical friction, electrical resistance and heat exchange between the actuator and the environment. The electromechanical dynamic of the actuator is modeled using a non-linear resistive-capacitive-inductor circuit coupled with a mass-spring-damper system, while the non-linear hysteresis is characterized using hysterons. The thermodynamic behavior of the model is constructed by making the electromechanical coupling temperature dependent, and by characterizing the entropy produced by the irreversible phenomena. By means of numerical simulations it is shown that the proposed model is capable of reproducing the expected behaviors and is in line with reported experimental results.
Keywords
Port-Hamiltonian system; Piezoelectric Actuator; Non-linear systems; Irreversible Thermodynamics; Hysteresis
Citation
- Journal: IFAC-PapersOnLine
- Year: 2021
- Volume: 54
- Issue: 14
- Pages: 436–441
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2021.10.393
- Note: 3rd IFAC Conference on Modelling, Identification and Control of Nonlinear Systems MICNON 2021- Tokyo, Japan, 15-17 September 2021
BibTeX
@article{Caballeria_2021,
title={{An irreversible port-Hamiltonian model for a class of piezoelectric actuators}},
volume={54},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2021.10.393},
number={14},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Caballeria, Javier and Ramirez, Hector and Gorrec, Yann Le},
year={2021},
pages={436--441}
}
References
- Agnus, J. et al. A smart microrobot on chip: design, identification and modeling. Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003) vol. 2 685–690 – 10.1109/aim.2003.1225426
- Aljanaideh, O., Al Janaideh, M. & Rakotondrabe, M. Inversion-free feedforward dynamic compensation of hysteresis nonlinearities in piezoelectric micro/nano-positioning actuators. 2015 IEEE International Conference on Robotics and Automation (ICRA) 2673–2678 (2015) doi:10.1109/icra.2015.7139560 – 10.1109/icra.2015.7139560
- Duindam, (2009)
- Ge, P. & Jouaneh, M. Modeling hysteresis in piezoceramic actuators. Precision Engineering vol. 17 211–221 (1995) – 10.1016/0141-6359(95)00002-u
- Ghafarirad, H., Rezaei, S. M., Sarhan, A. A. D. & Zareinejad, M. Continuous dynamic modelling of bimorph piezoelectric cantilevered actuators considering hysteresis effect and dynamic behaviour analysis. Mathematical and Computer Modelling of Dynamical Systems vol. 21 130–152 (2014) – 10.1080/13873954.2014.906472
- Modeling piezoelectric stack actuators for control of micromanipulation. IEEE Control Systems vol. 17 69–79 (1997) – 10.1109/37.588158
- Habineza, D., Rakotondrabe, M. & Le Gorrec, Y. Bouc–Wen Modeling and Feedforward Control of Multivariable Hysteresis in Piezoelectric Systems: Application to a 3-DoF Piezotube Scanner. IEEE Transactions on Control Systems Technology vol. 23 1797–1806 (2015) – 10.1109/tcst.2014.2386779
- Habineza, D., Zouari, M., Hammouche, M., Gorrec, Y. L. & Rakotondrabe, M. Characterization and modeling of the temperature effect on the piezoelectric tube actuator. IFAC-PapersOnLine vol. 49 354–360 (2016) – 10.1016/j.ifacol.2016.10.580
- Xinhan Huang, Jianhua Cai, Min Wang & Lv, X. A piezoelectric bimorph micro-gripper with micro-force sensing. 2005 IEEE International Conference on Information Acquisition 145–149 doi:10.1109/icia.2005.1635071 – 10.1109/icia.2005.1635071
- Karnopp, D. Computer Models of Hysteresis in Mechanical and Magnetic Components. Journal of the Franklin Institute vol. 316 405–415 (1983) – 10.1016/0016-0032(83)90051-0
- Liseli, J. B., Agnus, J., Lutz, P. & Rakotondrabe, M. An Overview of Piezoelectric Self-Sensing Actuation for Nanopositioning Applications: Electrical Circuits, Displacement, and Force Estimation. IEEE Transactions on Instrumentation and Measurement vol. 69 2–14 (2020) – 10.1109/tim.2019.2950760
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Ping Ge & Musa Jouaneh. Tracking control of a piezoceramic actuator. IEEE Transactions on Control Systems Technology vol. 4 209–216 (1996) – 10.1109/87.491195
- Rakotondrabe, M. Bouc–Wen Modeling and Inverse Multiplicative Structure to Compensate Hysteresis Nonlinearity in Piezoelectric Actuators. IEEE Transactions on Automation Science and Engineering vol. 8 428–431 (2011) – 10.1109/tase.2010.2081979
- Rakotondrabe, M., Clevy, C. & Lutz, P. H∞ deflection control of a unimorph piezoelectric cantilever under thermal disturbance. 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems 1190–1195 (2007) doi:10.1109/iros.2007.4399083 – 10.1109/iros.2007.4399083
- Rakotondrabe, M., Haddab, Y. & Lutz, P. Development, Modeling, and Control of a Micro-/Nanopositioning 2-DOF Stick–Slip Device. IEEE/ASME Transactions on Mechatronics vol. 14 733–745 (2009) – 10.1109/tmech.2009.2011134
- Rakotondrabe, M. & Ivan, I. A. Development and Dynamic Modeling of a New Hybrid Thermopiezoelectric Microactuator. IEEE Transactions on Robotics vol. 26 1077–1085 (2010) – 10.1109/tro.2010.2082032
- Rakotondrabe, M. & Gorrec, Y. L. Force control in piezoelectric microactuators using self scheduled H technique. IFAC Proceedings Volumes vol. 43 417–422 (2010) – 10.3182/20100913-3-us-2015.00027
- Ramirez, H., Gorrec, Y. L. & Calchand, N. Irreversible port-Hamiltonian formulation of non-isothermal electromechanical systems with hysteresis. IFAC-PapersOnLine vol. 51 19–24 (2018) – 10.1016/j.ifacol.2018.06.005
- Ramírez, H., Le Gorrec, Y., Maschke, B. & Couenne, F. On the passivity based control of irreversible processes: A port-Hamiltonian approach. Automatica vol. 64 105–111 (2016) – 10.1016/j.automatica.2015.07.002
- Ramirez, H., Maschke, B. & Sbarbaro, D. Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR. Chemical Engineering Science vol. 89 223–234 (2013) – 10.1016/j.ces.2012.12.002
- Ramirez, H., Maschke, B. & Sbarbaro, D. Modelling and control of multi-energy systems: An irreversible port-Hamiltonian approach. European Journal of Control vol. 19 513–520 (2013) – 10.1016/j.ejcon.2013.09.009
- van der Schaft, (2000)
- Zhu, W. & Rui, X.-T. Hysteresis modeling and displacement control of piezoelectric actuators with the frequency-dependent behavior using a generalized Bouc–Wen model. Precision Engineering vol. 43 299–307 (2016) – 10.1016/j.precisioneng.2015.08.010
- Zsurzsan, T.-G., Andersen, M. A. E., Zhang, Z. & Andersen, N. A. Preisach model of hysteresis for the Piezoelectric Actuator Drive. IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society 002788–002793 (2015) doi:10.1109/iecon.2015.7392524 – 10.1109/iecon.2015.7392524